Exercise 12.1

Question 1:

Find the coordinates of the point which divides the line segment joining the points $(-2,3$, 5) and ($1,-4,6$) in the ratio
(i) 2:3 internally, (ii) 2:3 externally.

Solution 1:

(i) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and Q ($\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}$) internally in the ratio m : n are
$\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{2}+n z_{1}}{m+n}\right)$
Let $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be the point that divides the line segment joining points $(-2,3,5)$ and $(1,-4,6)$ internally in the ratio $2: 3$
$x=\frac{2(1)+3(-2)}{2+3}, y=\frac{2(-4)+3(3)}{2+3}$, and $z=\frac{2(6)+3(5)}{2+3}$
i.e., $x=\frac{-4}{5}, y=\frac{1}{5}$, and $z=\frac{27}{5}$

Thus, the coordinates of the required point are $\left(\frac{-4}{5}, \frac{1}{5}, \frac{27}{5}\right)$
(ii) The coordinates of point R that divides the line segment joining points $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ externally in the ratio $\mathrm{m}: \mathrm{n}$ are
$\left(\frac{m x_{2}+n x_{1}}{m-n}, \frac{m y_{2}+n y_{1}}{m-n}, \frac{m z_{2}+n z_{1}}{m-n}\right)$
Let $\mathrm{R}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be the point that divides the line segment joining points $(-2,3,5)$ and $(1,-4,6)$ externally in the ratio $2: 3$
$x=\frac{2(1)-3(-2)}{2-3}, y=\frac{2(-4)-3(3)}{2-3}$, and $z=\frac{2(6)-3(5)}{2-3}$
i.e., $x=-8, y=17$, and $z=3$

Thus, the coordinates of the required point are $(-8,17,3)$.

Question 2:

Given that $\mathrm{P}(3,2,-4), \mathrm{Q}(5,4,-6)$ and $\mathrm{R}(9,8,-10)$ are collinear. Find the ratio in which Q divides PR.

Solution 2:

Let point $\mathrm{Q}(5,4,-6)$ divide the line segment joining points $\mathrm{P}(3,2,-4)$ and $\mathrm{R}(9,8,-10)$ in the ratio $\mathrm{k}: 1$.
Therefore, by section formula,
$(5,4,-6)=\left(\frac{k(9)+3}{k+1}, \frac{k(8)+2}{k+1}, \frac{k(-10)-4}{k+1}\right)$
$\Rightarrow \frac{9 k+3}{k+1}=5$
$\Rightarrow 9 k+3=5 k+5$
$\Rightarrow 4 k=2$
$\Rightarrow k=\frac{2}{4}=\frac{1}{2}$
Thus, point Q divides PR in the ratio 1:2.

Question 3:

Find the ratio in which the YZ-plane divides the line segment formed by joining the points ($2,4,7$) and ($3,-5,8$).

Solution 3:

Let the YZ plane divide the line segment joining points $(-2,4,7)$ and $(3,-5,8)$ in the ratio k:1.
Hence, by section formula, the coordinates of point of intersection are given by
$\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)$
On the YZ plane, the x -coordinate of any point is zero.
$\Rightarrow \frac{3 k-2}{k+1}=0$
$\Rightarrow 3 k-2=0$
$\Rightarrow k=\frac{2}{3}$
Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Question 4:

Using section formula, show that the points $\mathrm{A}(2,-3,4), \mathrm{B}(-1,2,1)$ and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$ are collinear.

Solution 4:

The given points are $\mathrm{A}(2,-3,4), \mathrm{B}(-1,2,1)$, and $\mathrm{C}\left(0, \frac{1}{3}, 2\right)$
Let P be a point that divides AB in the ratio $\mathrm{k}: 1$.
Hence, by section formula, the coordinates of P are given by $\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$
Now, we find the value of k at which point P coincides with point C .
By taking $\frac{-k+2}{k+1}=0$, we obtain $\mathrm{k}=2$.
For $\mathrm{k}=2$, the coordinates of point P are $\left(0, \frac{1}{3}, 2\right)$
i.e., $\left(0, \frac{1}{3}, 2\right)$ is a point that divides AB externally in the ratio $2: 1$ and is the same as point P .

Hence, points A, B, and C are collinear.

Question 5:

Find the coordinates of the points which trisect the line segment joining the points $\mathrm{P}(4,2,-$ $6)$ and $\mathrm{Q}(10,-16,6)$.

Solution 5:

Let A and B be the points that trisect the line segment joining points $\mathrm{P}(4,2,-6)$ and $\mathrm{Q}(10,-$ 16,6)

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by

$$
\left(\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-4)}{1+2}\right)=(6,-4,-2)
$$

Point B divides PQ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

$$
\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)+1(-4)}{2+1}\right)=(8,-10,2)
$$

Thus, $(6,-4,-2)$ and $(8,-10,2)$ are the points that trisect the line segment joining points $\mathrm{P}(4$, $2,-6)$ and $\mathrm{Q}(10,-16,6)$.

Miscellaneous Exercise

Question 1:

Three vertices of a parallelogram ABCD are $\mathrm{A}(3,-1,2), \mathrm{B}(1,2,-4)$ and $\mathrm{C}(-1,1,2)$. Find the coordinates of the fourth vertex.

Solution 1:

The three vertices of a parallelogram ABCD are given as $\mathrm{A}(3,-1,2), \mathrm{B}(1,2,-4)$, and $\mathrm{C}(-1$, $1,2)$. Let the coordinates of the fourth vertex be $\mathrm{D}(\mathrm{x}, \mathrm{y}, \mathrm{z})$.

We know that the diagonals of a parallelogram bisect each other.
Therefore, in parallelogram $\mathrm{ABCD}, \mathrm{AC}$ and BD bisect each other.
\therefore Mid-point of $\mathrm{AC}=$ Mid-point of BD
$\Rightarrow\left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right)=\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
$\Rightarrow(10,2)=\left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$
$\Rightarrow \frac{x+1}{2}=1, \frac{y+2}{2}=0$, and $\frac{z-4}{2}=2$
$\Rightarrow \mathrm{x}=1, \mathrm{y}=2$ and $\mathrm{z}=8$
Thus, the coordinates of the fourth vertex are $(1,-2,8)$.

Question 2:

Find the lengths of the medians of the triangle with vertices $\mathrm{A}(0,0,6), \mathrm{B}(0,4,0)$ and $(6,0$, $0)$.

Solution 2:

Let AD, BE, and CF be the medians of the given triangle ABC

Since AD is the median, D is the mid-point of BC
Coordinates of point $\mathrm{D}=\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right)=(3,2,0)$
$A D=\sqrt{(0-3)^{2}+(0-2)^{2}+(6-0)^{2}}=\sqrt{9+4+36}=\sqrt{49}=7$
Since BE is the median, E is the mid-point of AC .
Coordinate of point $\mathrm{E}=\left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{0+0}{2}\right)=(3,0,3)$
$B E=\sqrt{(3-0)^{2}+(0-4)^{2}+(3-0)^{2}}=\sqrt{9+16+9}=\sqrt{34}$
Since $C F$ is the median, F is the mid-point of $A B$
Coordinates of point $\mathrm{F}=\left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right)=(0,2,3)$
Length of $C F=\sqrt{(6-0)^{2}+(0-2)^{2}+(0-3)^{2}}=\sqrt{36+4+9}=\sqrt{49}=7$
Thus, the lengths of the medians of $\triangle \mathrm{ABC}$ are $7, \sqrt{34}$, and 7 .

Question 3:

If the origin is the centroid of the triangle PQR with vertices $\mathrm{P}(2 \mathrm{a}, 2,6), \mathrm{Q}(-4,3 \mathrm{~b},-10)$ and $R(8,14,2 c)$, then find the values of a, b and c.

Solution 3:

It is known that the coordinates of the centroid of the triangle, whose vertices are
$\left(x_{1}, y_{1}, z_{1}\right)\left(x_{2}, y_{2}, z_{2}\right)$ and $\left(x_{3}, y_{3}, z_{3}\right)$, are
$\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}$
Therefore, coordinates of the centroid of

$$
\triangle P Q R=\left(\frac{2 a-4+8}{3}, \frac{2+3 b+14}{3}, \frac{6-10+2 c}{3}\right)=\left(\frac{2 a+4}{3}, \frac{3 b+16}{3}, \frac{2 c-4}{3}\right)
$$

It is given that origin is the centroid of $\triangle P Q R$
$\Rightarrow \frac{2 a+3}{3}=0, \frac{3 b+16}{3}=0$ and $\frac{2 c-4}{3}=0$
$\Rightarrow a=-2, b=\frac{16}{3}$ and $c=2$
Thus, the respective values of a, b and c are $-2,-\frac{16}{3}$ and 2

Question 4:

Find the coordinates of a point on y-axis which are at a distance of $5 \sqrt{2}$ from the point P (3, $-2,5)$.

Solution 4:

If a point is on the y -axis, then x -coordinate and the z -coordinate of the point are zero.
Let $\mathrm{A}(0, \mathrm{~b}, 0)$ be the point on the y -axis at a distance of $5 \sqrt{2}$ from point $\mathrm{P}(3,-2,5)$.
Accordingly, AP $=5 \sqrt{2}$
$\Rightarrow A P^{2}=50$
$\Rightarrow(3-0)^{2}+(-2-b)^{2}+(5-0)^{2}=50$
$\Rightarrow 9+4+b^{2}+4 b+25=50$
$\Rightarrow b^{2}+4 b-12=0$
$\Rightarrow b^{2}+6 b-2 b-12=0$
$\Rightarrow(b+6)(b-2)=0$
$\Rightarrow b=-6$ or 2
Thus, the coordinate of the required points are $(0,2,0)$ and $(0,-6,5)$

Question 5:

A point R with x -coordinate 4 lies on the line segment joining the points $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(8$, 0,10). Find the coordinates of the point R .
[Hint: suppose R divides PQ in the ratio k : 1.] The coordinates of the point R are given by

Solution 5:

The coordinates of points P and Q are given as $\mathrm{P}(2,-3,4)$ and $\mathrm{Q}(8,0,10)$. Let R divide line segment PQ in the ratio $\mathrm{k}: 1$.
Hence, by section formula, the coordinates of point R are given by
$\left(\frac{k(8)+2}{k+1}, \frac{k(0)-3}{k+1}, \frac{k(10)+4}{k+1}\right)=\left(\frac{8 k+2}{k+1}, \frac{-3}{k+1}, \frac{10 k+4}{k+1}\right)$

It is given that the x -coordinate of point R is 4
$\frac{8 k+2}{k+1}=4$
$8 k+2=4 k+4$
$4 k=2$
$k=\frac{1}{2}$
Therefore, the coordinates of points R are
$\left(4, \frac{-3}{\frac{1}{2}+1}, \frac{10\left(\frac{1}{2}\right)+4}{\frac{1}{2}+1}\right)=(4,-2,6)$

Question 6:

If A and B be the points $(3,4,5)$ and $(-1,3,-7)$, respectively, find the equation of the set of points P such that $\mathrm{PA}^{2}+\mathrm{PB}^{2}=\mathrm{k}^{2}$, where k is a constant.

Solution 6:

The coordinates of points A and B are given as $(3,4,5)$ and $(-1,3,-7)$ respectively. Let the coordinates of point P be ($\mathrm{x}, \mathrm{y}, \mathrm{z}$).
On using distance formula, we obtain
$P A^{2}=(x-3)^{2}+(y-4)^{2}+(z-5)^{2}$
$=x^{2}+9-6 x+y^{2}+16-8 y+z^{2}+25-10 z$
$=x^{2}-6 x+y^{2}-8 y+z^{2}-10 z+50$
$P B^{2}=(x-1)^{2}+(y-3)^{2}+(z-7)^{2}$
$=x^{2}-2 x+y^{2}-6 y+z^{2}+14 z+59$
Now, if $P A^{2}+P B^{2}=k^{2}$, then
$\left(x^{2}-6 x+y^{2}-8 y+z^{2}-10 z+50\right)+\left(x^{2}+2 x+y^{2}-6 y+z 2+14 z+59\right)=k^{2}$
$\Rightarrow 2 x^{2}+2 y^{2}+2 z^{2}-4 x-14 y+4 z+109=k^{2}$
$\Rightarrow 2\left(x^{2}+y^{2}+z^{2}-2 x-7 y+2 z\right)=k^{2}-109$
$\Rightarrow x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}$
Thus, the required equation is $\mathrm{b} x^{2}+y^{2}+z^{2}-2 x-7 y+2 z=\frac{k^{2}-109}{2}$.

