Exercise 2.1

Question 1:

If
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$
, find the values of x and y.

Solution 1:

It is given that
$$\left(\frac{x}{3}+1, y-\frac{2}{3}\right) = \left(\frac{5}{3}, \frac{1}{3}\right)$$

Since the ordered pairs are equal, the corresponding elements will also be equal.

Therefore,
$$\frac{x}{3} + 1 = \frac{5}{3}$$
 and $y - \frac{2}{3} = \frac{1}{3}$

$$\frac{x}{3} + 1 = \frac{5}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{5}{3} - 1 \ y - \frac{2}{3} = \frac{1}{3}$$

$$\Rightarrow \frac{x}{3} = \frac{2}{3} \Rightarrow y = \frac{1}{3} + \frac{2}{3}$$

$$\Rightarrow x = 2 \Rightarrow y = 1$$

$$\therefore x = 2 \text{ and } y = 1$$

Question 2:

If the set A has 3 elements and the set B = $\{3,4,5\}$, then find the number of elements in $(A \times B)$?

Solution 2:

It is given that set A has 3 elements and the elements of set B are 3, 4, and 5.

 \Rightarrow Number of elements in set B = 3

Number of elements in $(A \times B)$

= (Number of elements in A) \times (Number of elements in B)

$$=3 \times 3 = 9$$

Thus, the number of elements in $(A \times B)$ in 9.

Question 3:

If $G = \{7, 8\}$ and $H = \{5, 4, 2\}$, find $G \times H$ and $H \times G$.

Solution 3:

$$G = \{7,8\}$$
 and $H = \{5,4,2\}$

We know that the Cartesian product $P \times Q$ of two non-empty sets P and Q is defined as $P \times Q - \{(p,q) : p \in P, q \in Q\}$

$$\therefore G \times H = \{(7,5), (7,4), (7,2), (8,5), (8,4), (8,2)\}$$

$$H \times G = \{(5,7), (5,8), (4,7), (4,8), (2,7), (2,8)\}$$

Question 4:

State whether each of the following statement are true or false. If the statement is false, rewrite the given statement correctly.

- (i) If $P = \{m, n\}$ and $Q = \{n, m\}$, then $P \times Q = \{(m, n), (n, m)\}$.
- (ii) If A and B are non-empty sets, then $A \times B$ is a non-empty set of ordered pairs (x, y) such that $x \in A$ and $y \in B$.
- (iii) If $A = \{1, 2\}, B = \{3, 4\}$, then $A \times \{B \cap \emptyset\} = \emptyset$.

Solution 4:

- (i) False
- If $P = \{m, n\} \text{ and } Q = \{n, m\}$, then

$$P \times Q = \{(m,m),(m,n),(n,m),(n,n)\}$$

- (ii) True
- (iii) True

Question 5:

If $A = \{-1,1\}$, find $A \times A \times A$.

Solution 5:

If is known that for any non-empty set $A, A \times A \times A$ is defined as $A \times A \times A = \{(a,b,c): a,b,c \in A\}$

It is given that $A = \{-1, 1\}$

$$\therefore A \times A \times A = \begin{cases} (-1,-1,-1), (-1,-1,1), (-1,1,-1), (-1,1,1), \\ (1,-1,-1), (1,-1,1), (1,1,-1), (1,1,1) \end{cases}$$

Question 6:

If $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$. Find A and B.

Solution 6:

If is given that $A \times B = \{(a, x), (a, y), (b, x), (b, y)\}$

We know that the Cartesian product of two non-empty sets P and Q is defined as $P \times Q = \{(p,q) : p \in P, q \in Q\}$

:. A is the set of all first elements and B is the set of all second elements.

Thus, $A = \{a, b\}$ and $B = \{x, y\}$

Ouestion 7:

Let $A = \{1, 2\}, B = \{1, 2, 3, 4\}, C = \{5, 6\}$ and $D = \{5, 6, 7, 8\}$. Verify that

- (i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$
- (ii) $A \times C$ is a subset of $B \times D$

Solution 7:

(i) To verify:
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

We have
$$B \cap C = \{1, 2, 3, 4\} \cap \{5, 6\} = \emptyset$$

$$\therefore L.H.S. = A \times (B \cap C) = A \times \emptyset = \emptyset$$

$$A \times B = \{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4)\}$$

$$A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$$

$$\therefore R.H.S. = (A \times B) \cap (A \times C) = \emptyset$$

$$\therefore$$
 L.H.S. = R.H.S.

Hence,
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(ii) To verify: $A \times C$ is a subset of $B \times D$

$$A \times C = \{(1,5), (1,6), (2,5), (2,6)\}$$

$$A \times D = \{(1,5), (1,6), (1,7), (1,8), (2,5), (2,6), (2,7), (2,8), (3,5), (3,6), (3,7), (2,8), (2,7), (2,7), (2,8), (2,7)$$

We can observe that all the elements of set $A \times C$ are the elements of set $B \times D$. Therefore, $A \times C$ is a subset of $B \times D$.

Ouestion 8:

Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Write $A \times B$. How many subsets will $A \times B$ have? List them.

Solution 8:

$$A = \{1, 2\}$$
 and $B = \{3, 4\}$

$$\therefore A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$$

$$\Rightarrow n(A \times B) = 4$$

We know that if C is a set with n(C) = m, then $n \lceil P(C) \rceil = 2^m$.

Therefore, the set $A \times B$ has $2^4 = 16$ subsets. These are

$$\emptyset$$
, $\{(1,3)\}$, $\{(1,4)\}$, $\{(2,3)\}$, $\{(2,4)\}$, $\{(1,3)(1,4)\}$, $\{(1,3),(2,3)\}$,

$$\{(1,3),(2,4)\},\{(1,4),(2,3)\},\{(1,4)(2,4)\},\{(2,3)(2,4)\}$$

$$\{(1,3),(1,4),(2,3)\},\{(1,3),(1,4),(2,4)\},\{(1,3),(2,3),(2,4)\}$$

$$\{(1,4),(2,3),(2,4)\},\{(1,3),(1,4),(2,3),(2,4)\}$$

Question 9:

Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x,1), (y,2), (z,1) are in $A \times B$, find A and B, where x, y and z are distinct elements.

Solution 9:

It is given that n(A) = 3 and n(B) = 2; and (x,1), (y,2), (z,1) are in $A \times B$.

We know that

A = Set of first elements of the ordered pair elements of $A \times B$

B = Set of second elements of the ordered pair elements of $A \times B$.

 $\therefore x$, y, and z are the elements of A; and 1 and 2 are the elements of B.

Since
$$n(A) = 3$$
 and $n(B) = 2$,

It is clear that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

Question 10:

The Cartesian product $A \times A$ has 9 elements among which are found (-1,0) and (0, 1). Find the set A and the remaining elements of $A \times A$.

Solution 10:

We know that if n(A) = p and n(B) = q, then $n(A \times B) = pq$.

$$\therefore n(A \times A) = n(A) \times n(A)$$

It is given that $n(A \times A) = 9$

$$\therefore n(A) \times n(A) = 9$$

$$\Rightarrow n(A) = 3$$

The ordered pairs (-1,0) and (0, 1) are two of the nine elements of $A \times A$.

We know that $A \times A = \{(a, a) : a \in A\}$. Therefore, -1, 0, and 1 are elements of A.

Since n(A) = 3, it is clear that $A = \{-1, 0, 1\}$.

The remaining elements of set $A \times A$ are (-1,-1),(-1,1),(0,-1),(0,0),(1,-1),(1,0), and (1,1).

Exercise 2.2

Question 1:

Let $A = \{1, 2, 3...14\}$. Define a relation R from A to A by $R = \{(x, y): 3x - y = 0\}$, where $x, y \in A$. Write down its domain, codomain and range.

Solution 1:

The relation R from A to A is given as $R = \{(x, y) : 3x - y = 0, \text{ where } x, y \in A\}$

i.e.,
$$R = \{(x, y) : 3x = y, \text{ where } x, y \in A\}$$

$$\therefore R = \{(1,3),(2,6),(3,9),(4,12)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

 \therefore Domain of $R = \{1, 2, 3, 4\}$

The whole set A is he codomain of the relation R.

 \therefore Codomain of $R = A = \{1, 2, 3, ..., 14\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of $R = \{3, 6, 9, 12\}$

Ouestion 2:

Define a relation R on the set **N** of natural numbers by $R = \{(x, y) : y = x + 5, x \text{ is a natural number less than 4; } x, y \in \mathbb{N}\}$. Depict this relationship using roster form. Write down the domain and the range.

Solution 2:

$$R = \{(x, y) : y = x + 5, x \text{ is a natural number less than } 4, x, y \in \mathbb{N}\}$$

The natural numbers less than 4 are 1, 2, and 3.

$$\therefore R = \{(1,6),(2,7),(3,8)\}$$

The domain of R is the set of all first elements of the ordered pairs in the relation.

:. Domain of $R = \{1, 2, 3\}$

The range of R is the set of all second elements of the ordered pairs in the relation.

 \therefore Range of $R = \{6,7,8\}$

Ouestion 3:

 $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$. Define a relation R from A to B by $R = \{(x, y): \text{ the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$. Write R in roster form.

Solution 3:

$$A = \{1, 2, 3, 5\}$$
 and $B = \{4, 6, 9\}$

 $R = \{(x, y) : \text{the difference between } x \text{ and } y \text{ is odd}; x \in A, y \in B\}$

$$\therefore R = \{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$$

Question 4:

The given figure shows a relationship between the sets P and Q. Write this relation

- (i) in set-builder form
- (ii) in roster form.

What is its domain and range?

Solution 4:

According to the given figure, $P = \{5, 6, 7\}, Q = \{3, 4, 5\}$

(i)
$$R = \{(x, y): y = x - 2; x \in P\}$$
 or $R = \{(x, y): y = x - 2 \text{ for } x = 5, 6, 7\}$

(ii)
$$R = \{(5,3), (6,4), (7,5)\}$$

Domain of $R = \{5, 6, 7\}$

Range of $R = \{3, 4, 5\}$

Question 5:

Let $A = \{1, 2, 3, 4, 6\}$. Let R be the relation on A defined by $\{(a,b): a,b \in A, b \text{ is exactly divisible by a}\}$.

- (i) Write R in roster form
- (ii) Find the domain of R
- (iii) Find the range of R.

Solution 5:

 $A = \{1, 2, 3, 4, 6\}, R = \{(a,b): a,b \in A, b \text{ is exactly divisible by } a\}$

(i)
$$R = \{(1,1),(1,2),(1,3),(1,4),(1,6),(2,2),(2,4),(2,6),(3,3),(3,6),(4,4),(6,6)\}$$

- (ii) Domain of $R = \{1, 2, 3, 4, 6\}$
- (iii) Range of $R = \{1, 2, 3, 4, 6\}$

Ouestion 6:

Determine the domain and range of the relation R defined by $R = \{(x, x+5) : x \in \{0,1,2,3,4,5\}\}$.

Solution 6:

$$R = \{(x, x+5) : x \in \{0,1,2,3,4,5\}\}$$

$$\therefore R = \{(0,5), (1,6), (2,7), (3,8), (4,9), (5,10)\}$$

$$\therefore$$
 Domain of $R = \{0, 1, 2, 3, 4, 5\}$

Range of $R = \{5, 6, 7, 8, 9, 10\}$

Question 7:

Write the relation $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$ in roster form.

Solution 7:

 $R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$. The prime numbers less than 10 are 2, 3, 5 and 7.

$$\therefore R = \{(2,8), (3,27), (5,125), (7,343)\}$$

Question 8:

Let $A = \{x, y, z\}$ and $B = \{1, 2\}$. Find the number of relations from A to B.

Solution 8:

It is given that $A = \{x, y, z\}$ and $B = \{1, 2\}$.

$$\therefore A \times B = \{(x,1),(x,2),(y,1),(y,2),(z,1),(z,2)\}$$

Since $n(A \times B) = 6$, the number of subsets of $A \times B$ is 2^6 .

Therefore, the number of relations from A to B is 2^6 .

Question 9:

Let R be the relation on **Z** defined by $R = \{(a,b): a,b \in \mathbb{Z}, a-b \text{ is an integer}\}$. Find the domain and range of R.

Solution 9:

$$R = \{(a,b): a,b \in \mathbb{Z}, a-b \text{ is an integer}\}$$

It is known that the difference between any two integers is always an integer.

$$\therefore$$
 Domain of $R = Z$

Range of $R = \mathbf{Z}$

Exercise 2.3

Ouestion 1:

Which of the following relations are functions? Give reasons. If it is a function, determine its domain and range.

(i)
$$\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$$

(ii)
$$\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$$

(iii)
$$\{(1,3),(1,5),(2,5)\}$$

Solution 1:

$$\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$$

Since 2, 5, 8, 11, 14 and 17 are the elements of the domain of the given relation having their unique images, this relation is a function. Here, domain = $\{2,5,8,11,14,17\}$ and range = $\{1\}$

(ii)
$$\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$$

Since 2, 4, 6, 8, 10, 12 and 14 are the elements of the domain of the given relation having their unique images, this relation is a function.

Here, domain = $\{2,4,6,8,10,12,14\}$ and range = $\{1,2,3,4,5,6,7\}$

(iii)
$$\{(1,3),(1,5),(2,5)\}$$

Since the same first element i.e., 1 corresponds to two different images i.e., 3 and 5, this relation is not a function.

Ouestion 2:

Find the domain and range of the following real function:

(i)
$$f(x) = -|x|$$

(ii)
$$f(x) = \sqrt{9-x^2}$$

Solution 2:

(i)
$$f(x) = -|x|, x \in R$$

We know that
$$|x| = \begin{cases} x, & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$$

$$\therefore f(x) = -|x| = \begin{cases} -x, & \text{if } x \ge 0 \\ x, & \text{if } x < 0 \end{cases}$$

Since f(x) is defined for $x \in \mathbf{R}$, the domain of f is \mathbf{R} .

It can be observed that the range of f(x) = -|x| is all real numbers except positive real numbers.

 \therefore The range of f is $(-\infty, 0]$.

(ii)
$$f(x) = \sqrt{9 - x^2}$$

Since $\sqrt{9-x^2}$ is defined for all real numbers that are greater than or equal to -3 and less than or equal to 3, the domain of f(x) is $\{x: -3 \le x \le 3\}$ or [-3,3].

For any value of x such that $-3 \le x \le 3$, the value of f(x) will lie between 0 and 3.

 \therefore The range of f(x) is $\{x:0 \le x \le 3\}$ or [0,3].

Question 3:

A function f is defined by f(x) = 2x - 5.

(i)
$$f(0)$$
,

(ii)
$$f(7)$$

(iii)
$$f(-3)$$

Solution 3:

The given function is f(x) = 2x - 5

Therefore,

(i)
$$f(0) = 2 \times 0 - 5 = 0 - 5 = -5$$

(ii)
$$f(7) = 2 \times 7 - 5 = 14 - 5 = 9$$

(iii)
$$f(-3) = 2 \times (-3) - 5 = -6 - 5 = -11$$

Ouestion 4:

The function 't' which maps temperature in degree Celsius into temperature in degree Fahrenheit is defined by $t(C) = \frac{9C}{5} + 32$. Find

(ii)
$$t(28)$$

(iii)
$$t(-10)$$

(iv) The value of C, when
$$t(C) = 212$$

Solution 4:

The given function is $t(C) = \frac{9C}{5} + 32$.

Therefore,

(i)
$$t(0) = \frac{9 \times 0}{5} + 32 = 0 + 32 = 32$$

(ii)
$$t(28) = \frac{9 \times 28}{5} + 32 = \frac{252 + 160}{5} = \frac{412}{5} = 82.4$$

(iii)
$$t(-10) = \frac{9 \times (-10)}{5} + 32 = 9 \times (-2) + 32 = -18 + 32 = 14$$

(iv) It is given that t(C) = 212

$$\therefore 212 = \frac{9C}{5} + 32$$

$$\Rightarrow \frac{9C}{5} = 212 - 32$$

$$\Rightarrow \frac{9C}{5} = 180$$

$$\Rightarrow$$
9C=180×5

$$\Rightarrow C = \frac{180 \times 5}{9} = 100$$

Thus, the value of t, when t(C) = 212, is 100.

Question 5:

Find the range of each of the following functions.

(i)
$$f(x) = 2-3x, x \in \mathbb{R}, x > 0$$
.

(ii)
$$f(x) = x^2 + 2$$
, x, is a real number.

(iii)
$$f(x) = x, x$$
 is a real number.

Solution 5:

(i)
$$f(x) = 2-3x, x \in \mathbb{R}, x > 0$$

The values of f(x) for various values of real numbers x>0 can be written in the tabular form as

X	0.01	0.1	0.9	1	2	2.5	4	5	
f(x)	1.97	1.7	- 0.7	-1	- 4	- 5.5	- 10	-13	

Thus, it can be clearly observed that the range of f is the set of all real numbers less than 2. i.e., range of $f = (-\infty, 2)$

Alter:

Let x > 0

$$\Rightarrow 3x > 0$$

$$\Rightarrow 2-3x < 2$$

$$\Rightarrow f(x) < 2$$

$$\therefore$$
 Range of $f = (-\infty, 2)$

(ii)
$$f(x) = x^2 + 2$$
, x, is a real number

The values of f(x) for various of real numbers x can be written in the tabular form as

	X	U	±0.3	3 ±0.	8 ±1	±Ζ	±3			
	f(x)	2	2.09	2.64	3	6	11			
2	X	0		±0.3	±0.8	±1		±2	±3	
1	f(x)	2		2.09	2.64	3		6	11	

Thus, it can be clearly observed that the range of f is the set of all real numbers greater than 2. i.e., range of $f = [2, \infty)$

Alter:

Let x be any real number. Accordingly,

$$x^2 \ge 0$$

$$\Rightarrow x^2 + 2 \ge 0 + 2$$

$$\Rightarrow x^2 + 2 \ge 2$$

$$\Rightarrow f(x) \ge 2$$

$$\therefore$$
 Range of $f = [2, \infty)$

(iii)
$$f(x) = x, x$$
 is a real number

It is clear that the range of f is the set of all real numbers.

 \therefore Range of $f = \mathbf{R}$.

Miscellaneous Exercise

Question 1:

The relation f is defined by
$$f(x) = \begin{cases} x^2, & 0 \le x \le 3 \\ 3x, & 3 \le x \le 10 \end{cases}$$

The relation g is defined by
$$g(x) = \begin{cases} x^2, & 0 \le x \le 10 \\ 3x, & 2 \le x \le 10 \end{cases}$$

Show that f is a function and g is not a function.

Solution 1:

The relation f is defined as

$$f(x) = \begin{cases} x^2, \ 0 \le x \le 3\\ 3x, \ 3 \le x \le 10 \end{cases}$$

It is observed that for

$$0 \le x < 3$$
, $f(x) = x^2$

$$3 < x \le 10$$
, $f(x) = 3x$

Also, at
$$x = 3$$
, $f(x) = 3^2 = 9$ or $f(x) = 3 \times 3 = 9$ i.e., at $x = 3$, $f(x) = 9$

Therefore, for $0 \le x \le 10$, the images of f(x) are unique. Thus, the given relation is a function.

The relation g is defined as

$$g(x) = \begin{cases} x^2, \ 0 \le x \le 2\\ 3x, \ 2 \le x \le 10 \end{cases}$$

It can be observed that for
$$x = 2$$
, $g(x) = 2^2 = 4$ and $g(x) = 3 \times 2 = 6$

Hence, element 2 of the domain of the relation g corresponds to two different images i.e., 4 and 6.

Hence, this relation is not a function.

Ouestion 2:

If
$$f(x) = x^2$$
, find $\frac{f(1.1) - f(1)}{(1.1-1)}$

Solution 2:

$$f(x) = x^2$$

$$\therefore \frac{f(1.1) - f(1)}{(1.1 - 1)} = \frac{(1.1)^2 - (1)^2}{(1.1 - 1)} = \frac{1.21 - 1}{0.1} = \frac{0.21}{01} = 2.1$$

Question 3:

Find the domain of the function
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

Solution 3:

The given function is
$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12}$$

$$f(x) = \frac{x^2 + 2x + 1}{x^2 - 8x + 12} = \frac{x^2 + 2x + 1}{(x - 6)(x - 2)}$$

It can be seen that function f is defined for all real numbers except at x = 6 and x = 2. Hence, the domain of f is $\mathbf{R} - \{2, 6\}$.

Ouestion 4:

Find the domain and the range of the real function f defined by $f(x) = \sqrt{(x-1)}$

Solution 4:

The given real function is $f(x) = \sqrt{(x-1)}$

It can be seen that $\sqrt{(x-1)}$ is defined for $f(x) = x \ge 1$.

Therefore, the domain of f is the set of all real numbers greater than or equal to 1 i.e., the domain of $f = [1, \infty)$.

As
$$x \ge 1 \Rightarrow (x-1) \ge 0 \Rightarrow \sqrt{(x-1)} \ge 0$$

Therefore, the range of f is the set of all real numbers greater than or equal to 0 i.e., the range of $f = [0, \infty)$.

Question 5:

Find the domain and the range of the real function f defined by f(x) = |x-1|.

Solution 5:

The given real function is f(x) = |x-1|.

It is clear that |x-1| is defined for all real numbers.

$$\therefore$$
 Domain of $f = R$

Also, for $x \in \mathbb{R} = |x-1|$ assumes all real numbers.

Hence, the range of f is the set of all non-negative real numbers.

Question 6:

Let
$$f = \left\{ \left(x, \frac{x^2}{1 + x^2} \right) : x \in \mathbb{R} \right\}$$

be a function from \mathbf{R} into \mathbf{R} . Determine the range of f.

Solution 6:

$$f = \left\{ \left(x, \frac{x^2}{1+x^2} \right) : x \in \mathbf{R} \right\}$$

$$= \left\{ (0,0), \left(\pm 0.5, \frac{1}{5} \right), \left(\pm 1, \frac{1}{2} \right), \left(\pm 1.5, \frac{9}{13} \right), \left(\pm 2, \frac{4}{5} \right), \left(3, \frac{9}{10} \right), \left(4, \frac{16}{17} \right), \dots \right\}$$

The range of f is the set of all second elements. It can be observed that all these elements are greater than or equal to 0 but less than 1.

[Denominator is greater numerator]. Thus, range of f = [0, 1)

Question 7:

Let $f,g: \mathbb{R} \to \mathbb{R}$ be defined, respectively by f(x) = x+1, g(x) = 2x-3. Find f+g, f-g and $\frac{f}{g}$.

Solution 7:

f,
$$g: R \to R$$
 is defined as $f(x) = x+1$, $g(x) = 2x-3$
 $(f+g)(x) = f(x)+g(x) = (x+1)+(2x-3)=3x-2$
 $\therefore (f+g)(x) = 3x-2$
 $(f-g)(x) = f(x)-g(x) = (x+1)-(2x-3)=x+1-2x+3=-x+4$
 $\therefore (f-g)(x) = -x+4$
 $(\frac{f}{g})(x) = \frac{f(x)}{g(x)}, g(x) \neq 0, x \in R$
 $\therefore (\frac{f}{g})(x) = \frac{x+1}{2x-3}, 2x-3 \neq 0 \text{ or } 2x \neq 3$
 $\therefore (\frac{f}{g})(x) = \frac{x+1}{2x-3}, x \neq \frac{3}{2}$

Question 8:

Let $f = \{(1,1),(2,3),(0,-1),(-1,-3)\}$ be a function from **Z** to **Z** defined by f(x) = ax + b, for some integers a,b. Determine a,b.

Solution 8:

$$f = \{(1,1), (2,3), (0,-1), (-1,-3)\} \text{ and } f(x) = ax + b$$

$$(1,1) \in f \Rightarrow f(1) = 1 \Rightarrow a \times 1 + b = 1$$

$$\Rightarrow a + b = 1$$

$$(0,-1) \in f \Rightarrow f(0) = -1 \Rightarrow a \times 0 + b = -1$$
On substituting $b = -1$ in $a + b = 1$

We obtain $a+(-1)=1 \Rightarrow a=1+1=2$. Thus, the respective values of a and b are 2 and -1.

Question 9:

Let R be a relation from N to N defined by $R = \{(a,b): a,b \in \mathbb{N} \text{ and } a = b^2\}$. Are the following true?

- (i) $(a,a) \in R$, for all $a \in \mathbb{N}$
- (ii) $(a,b) \in R$, implies $(b,a) \in R$
- (iii) $(a,b) \in R, (b,c) \in R$ implies $(a,c) \in R$.

Justify your answer in each case.

Solution 9:

$$R = \{(a,b): a,b \in \mathbb{N} \text{ and } a = b^2\}$$

(i) It can be seen that $2 \in \mathbb{N}$; however, $2 \neq 2^2 = 4$.

Therefore, the statement " $(a,a) \in R$, for all $a \in \mathbb{N}$ " is not true.

(ii) It can be seen that $(9,3) \in \mathbb{N}$ because $9,3 \in \mathbb{N}$ and $9=3^2$. Now, $3 \neq 9^2 = 81$; therefore, $(3,9) \notin \mathbb{N}$

Therefore, the statement " $(a,b) \in R$, implies " $(b,a) \in R$ " is not true.

(iii) It can be seen that $(9,3) \in R, (16,4) \in R$ because $9,3,16,4 \in \mathbb{N}$ and $9=3^2$ and $16=4^2$.

Now, $9 \neq 4^2 = 16$; therefore, $(9,4) \notin \mathbb{N}$

Therefore, the statement " $(a,b) \in R$, $(b,c) \in R$ implies $(a,c) \in R$ " is not true.

Question 10:

Let $A = \{1, 2, 3, 4\}, B = \{1, 5, 9, 11, 15, 16\}$ and $f = \{(1, 5), (2, 9), (3, 1), (4, 5), (2, 11)\}$. Are the following true?

- (i) f is a relation from A to B
- (ii) f is a function from A to B

Justify your answer in each case.

Solution 10:

$$A = \{1, 2, 3, 4\}$$
 and $B = \{1, 5, 9, 11, 15, 16\}$

$$A \times B = \{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),(2,9),(2,11),(2,15),(2,16)$$

$$(3,1),(3,5),(3,9),(3,11),(3,15),(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16) \}$$

It is given that $f = \{(1,5), (2,9), (3,1), (4,5), (2,11)\}$

(i) A relation from a non-empty set A to a non-empty set B is a subset of the Cartesian product $A \times B$.

Thus, *f* is a relation from A to B.

(ii) Since the same first element i.e, 2 corresponds to two different images i.e., 9 and 11, relation f is not a function.

Question 11:

Let f be the subset of $\mathbb{Z} \times \mathbb{Z}$ defined by $f = \{(ab, a+b) : a, b \in \mathbb{Z}\}$. If f a function from \mathbb{Z} to \mathbb{Z} : Justify your answer.

Solution 11:

The relation f is defined as $f = \{(ab, a+b) : a, b \in \mathbb{Z}\}$

We know that a relation f from a set A to a set B is said to be a function if every element of set A has unique images in set B.

Since
$$(2,6,-2,-6 \in \mathbb{Z},(2\times6,2+6),(-2\times-6,-2+-6)) \in f$$
 i.e., $(12,8),(12,-8) \in f$

It can be seen that the same first element i.e., 12 corresponds to two different images i.e., 8 and -8. Thus, relation f is not a function.

Question 12:

Let $A = \{9,10,11,12,13\}$ and let $f: A \to \mathbb{N}$ be defined by f(n) = the highest prime factor of n. Find the range of f.

Solution 12:

 $A = \{9,10,11,12,13\}$ and let $f: A \to \mathbb{N}$ is defined as f(n) = The highest prime factor of n

Prime factor of 9 = 3

Prime factors of 10 = 2, 5

Prime factor of 11 = 11

Prime factor of 12 = 2, 3

Prime factor of 13 = 13

 $\therefore f(9)$ = The highest prime factor of 9 = 3

f(10) = The highest prime factor of 10 = 5

f(11) = The highest prime factor of 11 = 11

f(12) = The highest prime factor 12 = 3

f(13) = The highest prime factor of 13 = 13

The range of f is the set of all f(n), where $n \in A$.

 \therefore Range of $f = \{3, 5, 11, 13\}$