Chapter 5 Continuity and Differentiability

Exercise 5.1

Question 1: Prove that the function f(x) = 5x - 3 is continuous at x = 0, x = -3 and at x = 5.

Solution 1:

```
The given function is f(x) = 5x-3

At x = 0, f(0) = 5 \times 0 - 3 = 3

\lim_{x \to 0} f(x) = \lim_{x \to 0} (5x-3) = 5x \ 0 - 3 = -3

\therefore \lim_{x \to 0} f(x) = f(0)

Therefore, f is continuous at x = 0

At x = -3, f(-3) = 5x(-3) - 3 = -18

\lim_{x \to 3} f(x) = \lim_{x \to 3} f(5x-3) = 5x(-3) - 3 = -18

\therefore \lim_{x \to 3} f(x) = f(-3)

Therefore, f is continuous at x = -3

At x = 5, f(x) = f(5) = 5x \ 5 - 3 = 25 - 3 = 22

\lim_{x \to 5} f(x) = \lim_{x \to 5} (5x-3) = 5x \ 5 - 3 = 22

\therefore \lim_{x \to 5} f(x) = \lim_{x \to 5} (5x-3) = 5x \ 5 - 3 = 22

\therefore \lim_{x \to 5} f(x) = f(5)

Therefore, f is continuous at x = 5
```

Question 2:

Examine the continuity of the function $f(x) = 2x^2 - 1$ at x = 3.

Solution 2:

The given function is $f(x) = 2x^2 - 1$ At x = 3, $f(x) = f(3) = 2x 3^2 - 1 = 17$ $\lim_{x \to 3} f(x) = \lim_{x \to 3} (2x^2 - 1) = 2x 3^2 - 1 = 17$ $\therefore \lim_{x \to 3} f(x) = f = (3)$ Thus, f is continuous, at x = 3

Question 3:

Examine the following functions for continuity.

a)
$$f(x) = x-5$$

b) $f(x) = \frac{1}{x-5}, x \neq 5$
c) $f(x) = \frac{x^2 - 25}{x+5}, x \neq 5$
d) $f(x) = |x-5|$

Solution 3:

a) The given function is f(x) = x - 5

It is evident that f is defined at every real number k and its value at k is k-5.

It is also observed that $\lim_{x \to k} f(x) = \lim_{x \to k} f(x-5) = k = k-5 = f(k)$ $\therefore \lim_{x \to k} f(x) = f(k)$

Hence, f is continuous at every real number and therefore, it is a continuous function.

b). The given function is
$$f(x) = \frac{1}{x-5}, x \neq 5$$

for any real number $k \neq 5$, we obtain

$$\lim_{x \to k} f(x) = \lim_{x \to k} \frac{1}{x-5} = \frac{1}{k-5}$$

Also, $f(k) = \frac{1}{k-5}$ (As $k \neq 5$)
 $\therefore \lim_{x \to k} f(x) = f(k)$

Hence, f is continuous at every point in the domain of f and therefore, it is a continuous function.

c). The given function is
$$f(x) = \frac{x^2 - 25}{x+5}, x \neq -5$$

For any real number $c \neq -5$, we obtain

$$\lim_{x \to c} f(x) = \lim_{x \to c} \frac{x^2 - 25}{x+5} = \lim_{x \to c} \frac{(x+5)(x-5)}{x+5} = \lim_{x \to c} (x-5) = (c-5)$$
Also, $f(c) = \frac{(c+5)(c-5)}{c+5} = c(c-5)(as \ c \neq 5)$
 $\therefore \lim_{x \to c} f(x) = f(c)$

Chapter 5 Continuity and Differentiability

Hence f is continuous at every point in the domain of f and therefore. It is continuous function.
d). The given function is $f(x) = x-5 = \begin{cases} 5-x, & \text{if } x < 5 \\ x-5, & \text{if } x \ge 5 \end{cases}$
This function f is defined at all points of the real line.
Let <i>c</i> be a point on a real line. Then, $c < 5$ or $c = 5$ or $c > 5$ case $I : c < 5$
Then, $f(c) = 5 - c$
$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (5-x) = 5-c$
$\therefore \lim_{x \to \infty} f(x) = f(c)$
Therefore, f is continuous at all real numbers less than 5.
case $II: c=5$
Then, $f(c) = f(5) = (5-5) = 0$
$\lim_{x \to 5^{-}} f(x) = \lim_{x \to 5^{-}} (5-x) = (5-5) = 0$
$\lim_{x \to 5^{+}} f(x) = \lim_{x \to 5} (x - 5) = 0$
$\therefore \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x) = f(c)$
Therefore, f is continuous at $x=5$
case $III: c > 5$
Then, $f(c) = f(5) = c - 5$
$\lim_{x \to c} f(x) = \lim_{x \to c} f(x-5) = c-5$
$\therefore \lim_{x \to c} f(x) = f(c)$
Therefore, f is continuous at real numbers greater than 5.
Hence, f is continuous at every real number and therefore, it is a continuous function.

Question 4:

Prove that the function $f(x) = x^n$ is continuous at x = n is a positive integer.

Solution 4:

The given function is $f(x) = x^n$

It is evident that f is defined at all positive integers, n, and its value at n is n^n .

Then, $\lim_{x \to n} f(n) = \lim_{x \to n} f(x^n) = n^n$ $\therefore \lim_{x \to n} f(x) = f(n)$ Therefore, f is continuous at n, where n is a positive integer.

Question 5:

Is the function f defined by $f(x) = \begin{cases} x, if \ x \le 1 \\ 5, if \ x > 1 \end{cases}$ Continuous at x=0? At x=1?, At x=2? **Solution 5:** The given function f is $f(x) = \begin{cases} x, if \ x \le 1 \\ 5, if \ x > 1 \end{cases}$ At x = 0, It is evident that f is defined at 0 and its value at 0 is 0. Then, $\lim_{x \to 0} f(x) = \lim_{x \to 0} x = 0$ $\therefore \lim f(x) = f(0)$ Therefore, f is continuous at x=0At x=1, f is defined at 1 and its value at is 1. The left hand limit of f at x=1 is, $\lim_{x \to 1} f(x) = \lim_{x \to 1} x = 1$ The right hand limit of f at x = 1 is, $\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} f(5)$ $\therefore \lim_{x \to \mathbf{l}^{-}} f(x) \neq \lim_{x \to \mathbf{l}^{+}} f(x)$ Therefore, f is not continuous at x=1At x=2, f is defined at 2 and its value at 2 is 5. Then, $\lim_{x \to 2} f(x) = \lim_{x \to 2} f(5) = 5$ $\therefore \lim f(x) = f(2)$

Therefore, f is continuous at x=2

Question 6:

Find all points of discontinuous of f, where f is defined by

$$f(x) = \begin{cases} 2x+3, & \text{if } x \le 2\\ 2x-3, & \text{if } x > 2 \end{cases}$$

Solution 6:

The give function f is $f(x) = \begin{cases} 2x+3, & \text{if } x \le 2\\ 2x-3, & \text{if } x > 2 \end{cases}$

It is evident that the given function f is defined at all the points of the real line.

Let c be a point on the real line. Then, three cases arise.

```
I.
        c < 2
        c > 2
 II.
III.
        c = 2
Case (i)c < 2
Then, f(x) = 2x + 3
\lim f(x) = \lim (2x+3) = 2c+3
\therefore \lim f(x) = f(c)
Therefore, f is continuous at all points, x, such that x < 2
Case (ii)c > 2
Then, f(c) = 2c - 3
\lim f(x) = \lim (2x-3) = 2c-3
\therefore \lim f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 2
Case (iii)c = 2
Then, the left hand limit of f at x = 2 is,
\lim f(x) = \lim (2x+3) = 2x^2+3 = 7
 x \rightarrow 2^{-}
              x \rightarrow 2
The right hand limit of f at x = 2 is,
```

Chapter 5 Continuity and Differentiability

-3

 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (2x+3) = 2x2-3=1$ It is observed that the left and right hand limit of f at x = 2 do not coincide. Therefore, f is not continuous at x = 2Hence, x = 2 is the only point of discontinuity of f.

Question 7:

Find all points of discontinuity of f, where f is defined by

$$f(x) = \begin{cases} |x|+3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x+2, & \text{if } x \ge 3 \end{cases}$$

Solution 7:

The given function f is
$$f(x) = \begin{cases} |x|+3, & \text{if } x \le -3 \\ -2x, & \text{if } -3 < x < 3 \\ 6x+2, & \text{if } x \ge 3 \end{cases}$$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.
Case I:
If
$$c < -3$$
, then $f(c) = -c + 3$

$$\lim_{x \to c} f(x) = \lim_{x \to c} (-x+3) = -c + 3$$

$$\therefore \lim_{x \to c} f(x) = f(c)$$
Therefore, f is continuous at all points x, such that $x < Case II$:
If $c = -3$, then $f(-3) = -(-3) + 3 = 6$

$$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (-x+3) = -(-3) + 3 = 6$$

$$\therefore \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} f(-2x) = 2x(-3) = 6$$

$$\therefore \lim_{x \to 3} f(x) = f(-3)$$
Therefore, f is continuous at $x = -3$
Case III :

Chapter 5 **Continuity and Differentiability**

If $-3 < c < 3$, then $f(c) = -2c$ and $\lim_{x \to c} f(x) = \lim_{x \to 3c} (-2x) = -2c$
$\therefore \lim_{x \to c} f(x) = f(c)$
Therefore, f is continuous in $(-3,3)$.
Case IV:
If $c=3$, then the left hand limit of f at $x=3$ is,
$\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} f(-2x) = -2x3 = -6$
The right hand limit of f at $x=3$ is,
$\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} f(6x+2) = 6x3+2=20$
It is observed that the left and right hand limit of f at $x = 3$ do not coincide.
Therefore, f is not continuous at $x=3$
Case V :
If $c > 3$, then $f(c) = 6c + 2$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (6x + 2) = 6c + 2$
$\therefore \lim_{x \to c} f(x) = f(c)$
Therefore, f is continuous at all points x , such that $x > 3$
Hence, $x = 3$ is the only point of discontinuity of f .

Question 8:

Find all points of discontinuity of f, where f is defined by $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0\\ x & \text{if } x = 0 \end{cases}$

Solution 8:

The given function f is $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$

It is known that, $x < 0 \Longrightarrow |x| = -x$ and $x > 0 \Longrightarrow |x| = x$

Therefore, the given function can be rewritten as

$$f(x) = \begin{cases} \left| \frac{x}{x} = \frac{-x}{x} = -1 & \text{if } x < 0 \\ 0, & \text{if } x = 0 \\ \left| \frac{x}{x} = \frac{x}{x} = 1 & \text{if } x > 0 \end{cases}$$

The given function f is defined at all the points of the real line.
Let c be a point on the real line.
Case I :
If $c < 0$, then $f(c) = -1$
$$\lim_{x \to c} f(x) = \lim_{x \to c} (-1) = -1$$

 $\therefore \lim_{x \to c} f(x) = f(c)$
Therefore, f is continuous at all points $x < 0$
Case II :
If $c = 0$, then the left hand limit of f at $x = 0$ is,
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (-1) = -1$$

The right hand limit of f at $x = 0$ is,
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (1) = 1$$

It is observed that the left and right hand limit of f at $x = 0$ do not coincide.
Therefore, f is not continuous at $x = 0$
Case III:
If $c > 0$, $f(c) = 1$
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1) = 1$$

 $\therefore \lim_{x \to \infty} f(x) = \lim_{x \to \infty} (1) = 1$
Therefore, f is continuous at all points x , such that $x > 0$
Hence, $x = 0$ is the only point of discontinuity of f .

Question 9:

Find all points of discontinuity of f, where f is defined by
$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0\\ -1, & \text{if } x \ge 0 \end{cases}$$

Solution 9:

The given function f is $f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0\\ -1, & \text{if } x \ge 0 \end{cases}$

It is known that, $x < 0 \Longrightarrow |x| = -x$

Therefore, the given function can be rewritten as

$$f(x) = \begin{cases} \frac{x}{|x|}, & \text{if } x < 0\\ -1, & \text{if } x \ge 0 \end{cases}$$
$$\Rightarrow f(x) = -1 \text{ for all } x \in \mathbf{R}$$
Let *c* be any real number. Then, limp

Let c be any real number. Then, $\lim_{x \to c} f(x) = \lim_{x \to c} (-1) = -1$

Also,
$$f(c) = -1 = \lim_{x \to \infty} f(x)$$

Therefore, the given function is continuous function. Hence, the given function has no point of discontinuity.

Question 10:

Find all the points of discontinuity of f, where f is defined by $f(x) = \begin{cases} x+1 & \text{if } x \ge 1 \\ x^2+1, & f x < 1 \end{cases}$

Solution 10:

The given function f is $f(x) = \begin{cases} x+1 & \text{if } x \ge 1 \\ x^2+1, & f x < 1 \end{cases}$

The given function f is defined at all the points of the real line. Let c be a point on the real line. *Case I*: If c < 1 then $f(c) = c^2 + 1$ and $\lim_{x \to c} f(x) = \lim_{x \to c} f(x^2 + 1) = c^2 + 1$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous at all points x, such that x < 1 *Case II*: If c = 1, then f(c) = f(1) = 1 + 1 = 2The left hand limit of f at x = 1 is,

```
\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x^{2} + 1) = 1^{2} + 1 = 2
The right hand limit of f at x = 1 is,
\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{2} + 1) = 1^{2} + 1 = 2
\therefore \lim_{x \to 1} f(x) = f(c)
Therefore, f is continuous at x = 1
Case III :
If c > 1, then f(c) = c + 1
\lim_{x \to c} f(x) = \lim_{x \to c} (x + 1) = c + 1
\therefore \lim_{x \to c} f(x) = f(c)
Therefore, f is continuous at all points x, such that x > 1
```

Hence, the given function f has no points of discontinuity.

Question 11:

Find all points of discontinuity of f, where f is defined by $f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2 \\ x^2 + 1, & \text{if } x > 2 \end{cases}$

Solution 11:

The given function f is $f(x) = \begin{cases} x^3 - 3, & \text{if } x \le 2\\ x^2 + 1, & \text{if } x > 2 \end{cases}$

The given function f is defined at all the points of the real line.

Let *c* be a point on the real line. *Case I*: If c < 2, then $f(c) = c^3 - 3$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x^3 - 3) = c^3 - 3$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, *f* is continuous at all points *x*, such that x < 2 *Case II*: If c = 2, then $f(c) = f(2) = 2^3 - 3 = 5$ $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{3} - 3) = 2^{3} - 3 = 5$ $\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x^{2} + 1) = 2^{2} + 1 = 5$ $\therefore \lim_{x \to 2} 1f(x) = f(2)$ Therefore, f is continuous at x = 2Case III: If c > 2, then $f(c) = c^{2} + 1$ $\lim_{x \to c} f(x) = \lim_{x \to c} (x^{2} + 1) = c^{2} + 1$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous at all points x, such that x > 2Thus, the given function f is continuous at every point on the real line. Hence, f has no point of discontinuity.

Question 12:

Find all points of discontinuity of f, where f is defined by $f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$

Solution 12:

The given function f is $f(x) = \begin{cases} x^{10} - 1, & \text{if } x \le 1 \\ x^2, & \text{if } x > 1 \end{cases}$

The given function f is defined at all the points of the real line. Let c be a point on the real line. *Case I*: If c < 1, then $f(c) = c^{10} - 1$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x^{10} - 1) = c^{10} - 1$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous at all points x, such that x < 1 *Case II*: If c = 1, then the left hand limit of f at x = 1 is, $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^{10} - 1) = 10^{10} - 1 = 1 - 1 = 0$ The right hand limit of f at x = 1 is,

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2) = 1^2 = 1$$

It is observed that the left and right hand limit of f at $x = 1$ do not coincide.
Therefore, f is not continuous at $x = 1$
Case III:
If $c > 1$, then $f(c) = c^2$
$$\lim_{x \to c} f(x) = \lim_{x \to c} (x^2) = c^2$$
$$\therefore \lim_{x \to c} f(x) = f(c)$$

Therefore, f is continuous at all pints x, such that x > 1

Thus, from the above observation, it can be concluded that x=1 is the only point of discontinuity of f.

Question 13:

Is the function defined by $f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$ a continuous function?

Solution 13:

The given function is $f(x) = \begin{cases} x+5, & \text{if } x \le 1 \\ x-5, & \text{if } x > 1 \end{cases}$

The given function f is defined at all the points of the real line.

Let c be a point on the real line.

Case I:

If c < 1, then f(c) = c + 5 and $\lim_{x \to c} f(x) = \lim_{x \to c} (x + 5) = c + 5$

$$\therefore \lim_{x \to x} f(x) = f(c)$$

Therefore, f is continuous at all points x, such that x < 1*Case II*:

Cust II.

If c = 1, then f(1) = 1 + 5 = 6

The left hand limit of f at x=1 is,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x+5) = 1+5 = 6$$

The right hand limit of f at x=1 is,

Chapter 5 Continuity and Differentiability

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 5) = 1 - 5 = -4$$

It is observed that the left and right hand limit of f at x = 1 do not coincide.

Therefore, f is not continuous at x=1

Case III:

If
$$c > 1$$
, then $f(c) = c - 5$ and $\lim_{x \to c} f(x) = \lim_{x \to c} (x - 5) = c - 5$

 $\therefore \lim_{x \to c} f(x) = f(c)$

Therefore, f is continuous at all points x, such that x > 1

Thus, from the above observation, it can be concluded that x=1 is the only point of discontinuity of f.

Question 14:

Discuss the continuity of the function f, where f is defined by $f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$

Solution 14:

The given function is
$$f(x) = \begin{cases} 3, & \text{if } 0 \le x \le 1 \\ 4, & \text{if } 1 < x < 3 \\ 5, & \text{if } 3 \le x \le 10 \end{cases}$$

The given function is defined at all points of the interval [0,10].

Let c be a point in the interval [0,10]. Case I: If $0 \le c < 1$, then f(c) = 3 and $\lim_{x \to c} f(x) = \lim_{x \to c} (3) = 3$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous in the interval [0,1). Case II: If c = 1, then f(3) = 3The left hand limit of f at x = 1 is, $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (3) = 3$ The right hand limit of f at x = 1 is,

 $\lim f(x) = \lim (4) = 4$ It is observed that the left and right hands limit of f at x = 1 do not coincide. Therefore, f is not continuous at x=1Case III: If 1 < c < 3, then f(c) = 4 and $\lim_{x \to c} f(x) = \lim_{x \to c} (4) = 4$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points of the interval (1,3). Case IV: If c = 3, then f(c) = 5The left hand limit of f at x = 3 is, $\lim_{x \to 1} f(x) = \lim_{x \to 1} (4) = 4$ $x \rightarrow 3^{-}$ The right hand limit of f at x = 3 is, $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (5) = 5$ It is observed that the left and right hand limit of f at x = 3 do not coincide. Therefore, f is not continuous at x=3Case V: If $3 < c \le 10$, then f(c) = 5 and $\lim_{x \to c} f(x) = \lim_{x \to c} (5) = 5$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points of the interval (3,10]. Hence, f is not continuous at x=1 and x=3.

Question 15:

Discuss that continuity of the function f, where f is defined by $f(x) = \begin{cases} 2x, & \text{if } x < 0 \\ 0, & \text{if } 0 \le x \le 1 \\ 4x, & \text{if } x > 1 \end{cases}$

Solution 15:

2x, if x < 0The given function is $f(x) = \begin{cases} 0, & \text{if } 0 \le x \le 1 \\ 4x, & \text{if } x > 1 \end{cases}$ The given function is defined at all points of the real line. Let *c* be a point on the real line. Case I: If c < 0, then f(c) = 2c $\lim f(x) = \lim (2x) = 2c$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points x, such that x < 0Case II: If c = 0, then f(c) = f(0) = 0The left hand limit of f at x = 0 is, $\lim_{x \to 0} f(x) = \lim_{x \to 0} (2x) = 2x0 = 0$ $x \rightarrow 0^{-}$ The right hand limit of f at x = 0 is, $\lim f(x) = \lim (0) = 0$ $\therefore \lim f(x) = f(0)$ Therefore, f is continuous at x=0Case III: If 0 < c < 1, then f(x) = 0 and $\lim_{x \to c} f(x) = \lim_{x \to c} (0) = 0$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points of the interval (0,1). Case IV: If c = 1, then f(c) = f(1) = 0The left hand limit of f at x=1 is, $\lim f(x) = \lim (0) = 0$ $x \rightarrow 1^{-}$ The right hand limit of f at x=1 is, $\lim f(x) = \lim (4x) = 4x_1 = 4$ It is observed that the left and right hand limits of f at x = 1 do not coincide. Therefore, f is not continuous at x=1 *Case V*: If c < 1, then f(c) = 4c and $\lim_{x \to c} f(x) = \lim_{x \to c} (4x) = 4c$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous at all points x, such that x > 1Hence, f is not continuous only at x = 1

Question 16:

Discuss the continuity of the function f, where f is defined by $f(x) = \begin{cases} -2, & \text{if } x \le -1 \\ 2x, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$

Solution 16:

The given function f is $f(x) = \begin{cases} -2, & \text{if } x \le -1 \\ 2x, & \text{if } -1 < x \le 1 \\ 2, & \text{if } x > 1 \end{cases}$

The given function is defined at all points of the real line. Let c be a point on the real line. Case I: If c < -1, then f(c) = -2 and $\lim_{x \to c} f(x) = \lim_{x \to c} (-2) = -2$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous at all points x, such that x < -1Case II: If c = -1, then f(c) = f(-1) = -2The left hand limit of f at x = -1 is, $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (-2) = -2$ The right hand limit of f at x = -1 is, $\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} = 2 x (-1) = -2$ $\therefore \lim_{x \to -1^+} f(x) = f(-1)$

Therefore, f is continuous at x = -1Case III: If -1 < c < 1, then f(c) = 2c $\lim_{x \to c} f(x) = \lim_{x \to c} (2x) = 2c$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points of the interval (-1,1). Case IV: If c = 1, then f(c) = f(1) = 2x1 = 2The left hand limit of f at x=1 is, $\lim_{x \to \infty} f(x) = \lim_{x \to \infty} (2x) = 2x = 2x$ The right hand limit of f at x = 1 is, $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 2 = 2$ $\therefore \lim_{x \to 1} f(x) = f(c)$ Therefore, f is continuous at x = 2*Case V* : If c > 1, f(c) = 2 and $\lim_{x \to 2} f(x) = \lim_{x \to 2} (2) = 2$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points, x, such that x > 1Thus, from the above observations, it can be concluded that f is continuous at all points of the

Question 17:

real line.

Find the relationship be *a* and *b* so that the function *f* defined by $f(x) = \begin{cases} ax+1, & \text{if } x \le 3 \\ bx+3, & \text{if } x > 3 \end{cases}$ is

continuous at x=3.

Solution 17:

The given function f is $f(x) = \begin{cases} ax+1, & \text{if } x \le 3 \\ bx+3, & \text{if } x > 3 \end{cases}$

If f is continuous at x = 3, then

Chapter 5 Continuity and Differentiability

 $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} f(x) = f(3) \qquad \dots \dots (1)$ Also, $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} f(ax+1) = 3a+1$ $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} f(bx+1) = 3b+3$ f(3) = 3a+1Therefore, from (1), we obtain 3a+1 = 3b+3 = 3a+1 $\Rightarrow 3a+1 = 3b+3$ $\Rightarrow 3a = 3b+2$ $\Rightarrow a = b + \frac{2}{3}$ Therefore, the required relationship is given by , $a = b + \frac{2}{3}$

Question 18:

For what value of λ is the function defined by $f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{if } x \le 0 \\ 4x + 1, & \text{if } x > 0 \end{cases}$ continuous at x = 0? what about continuity at x = 1?

Solution 18:

The given function f is $f(x) = \begin{cases} \lambda(x^2 - 2x), & \text{if } x \le 0\\ 4x + 1, & \text{if } x > 0 \end{cases}$ If f is continuous at x = 0, then $\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)$ $\Rightarrow \lim_{x \to 0^-} \lambda(x^2 - 2x) = \lim_{x \to 0^+} (4x + 1) = \lambda(0^2 - 2x0)$ $\Rightarrow \lambda(0^2 - 2x0) = 4x0 + 1 = 0$ $\Rightarrow 0 = 1 = 0, \text{ which is not possible}$ Therefore, there is no value of λ for which f is continuous at x = 0At x = 1, f(1) = 4x + 1 = 4x + 1 = 5 $\lim_{x \to 1^+} (4x + 1) = 4x1 + 1 = 5$ $\therefore \lim_{x \to 1} f(x) = f(1)$ Therefore, for any values of λ , f is continuous at x = 1

Question 19:

Show that the function defined by g(x) = x - [x] is discontinuous at all integral point. Here [x] denotes the greatest integer less than or equal to x.

Solution 19: The given function is g(x) = x - [x]It is evident that g is defined at all integral points. Let n be a integer. Then, g(n) = n - [n] = n - n = 0The left hand limit of f at x = n is, $\lim_{x \to n^-} g(x) = \lim_{x \to n^-} [x - [x]] = \lim_{x \to n^-} (x) - \lim_{x \to n^-} [x] = n - (n - 1) = 1$ The right hand limit of f at x = n is, $\lim_{x \to n^+} g(x) = \lim_{x \to n^+} [x - [x]] = \lim_{x \to n^+} (x) - \lim_{x \to n^+} [x] = n - n = 0$ It is observed that the left and right hand limits of f at x = n do not coincide. Therefore, f is not continuous at x = nHence, g is discontinuous at all integral points.

Question 20: Is the function defined by $f(x) = x^2 - \sin x + 5$ continuous at $x = \pi$?

Solution 20:

The given function is $f(x) = x^2 - \sin x + 5$ It is evident that f id defined at $x = \pi$ At $x = \pi$, $f(x) = f(\pi) = \pi^2 - \sin \pi + 5 = \pi^2 - 0 + 5 = \pi^2 + 5$ Consider $\lim_{x \to \pi} f(x) = \lim_{x \to \pi} (x^2 - \sin x + 5)$ Put $x = \pi + h$

If
$$x \to \pi$$
, then it is evident that $h \to 0$

$$\therefore \lim_{x \to \pi} f(x) = \lim_{x \to \pi} (x^2 - \sin x) + 5)$$

$$= \lim_{h \to 0} \left[(\pi + h)^2 - \sin(\pi + h) + 5 \right]$$

$$= \lim_{h \to 0} (\pi + h)^2 - \lim_{h \to 0} \sin(\pi + h) + \lim_{h \to 0} 5$$

$$= (\pi + 0)^2 - \lim_{h \to 0} \left[\sin \pi \cosh + \cos \pi + \sinh \right] + 5$$

$$= \pi^2 - \lim_{h \to 0} \sin \pi \cosh - \lim_{h \to 0} \cos \pi \sinh + 5$$

$$= \pi^2 - \sin \pi \cos 0 - \cos \pi \sin 0 + 5$$

$$= \pi^2 - 0 \times 1 - (-1) \times 0 + 5$$

$$= \pi^2 + 5$$

$$\therefore \lim_{x \to x} f(x) = f(\pi)$$

Therefore, the given function f is continuous at $x = \pi$

Question 21:

Discuss the continuity of the following functions.

a)
$$f(x) = \sin x + \cos x$$

b)
$$f(x) = \sin x - \cos x$$

c)
$$f(x) = \sin x \propto \cos x$$

Solution 21:

It is known that if g and h are two continuous functions, then g + h, g - h and $g \cdot h$ are also continuous.

It has to proved first that $g(x) = \sin x$ and $h(x) = \cos x$ are continuous functions.

Let $g(x) = \sin x$

It is evident that $g(x) = \sin x$ is defined for every real number.

```
Let c be a real number. Put x = c + h
```

If
$$x \to c$$
, then $h \to 0$
 $g(c) = \sin c$
 $\lim_{x \to c} g(x) = \lim_{x \to c} g \sin x$
 $= \limsup_{h \to 0} (c+h)$

 $= \lim_{h \to 0} \left[\sin c \cosh + \cos c \sinh \right]$ $= \lim_{h \to 0} (\sin c \cosh) + \lim_{h \to 0} (\cos c \sinh)$ $=\sin c\cos 0 + \cos c\sin 0$ $=\sin c + 0$ $= \sin c$ $\therefore \lim g(x) = g(c)$ Therefore, g is a continuous function. Let $h(x) = \cos x$ It is evident that $h(x) = \cos x$ is defined for every real number. Let *c* be a real number. Put x = c + hIf $x \rightarrow c$, then $h \rightarrow 0$ $h(c) = \cos c$ $\lim_{x\to c} h(x) = \lim_{x\to c} \cos x$ $=\lim_{n\to\infty}\cos(c+h)$ $= \lim_{h \to 0} \left[\cos c \cosh - \sin c \sinh \right]$ $= \lim_{h \to 0} \cos c \cosh - \limsup_{h \to 0} \sin c \sinh c$ $=\cos c\cos 0 - \sin c\sin 0$ $=\cos c \ge 1 - \sin c \ge 0$ $=\cos c$ $\therefore \lim_{h \to 0} h(x) = h(c)$ Therefore, h is a continuous function. Therefore, it can be concluded that a) $f(x) = g(x) + h(x) = \sin x + \cos x$ is a continuous function b) $f(x) = g(x) - h(x) = \sin x - \cos x$ is a continuous function c) $f(x) = g(x) \ge h(x) = \sin x \ge \cos x$ is a continuous function

Question 22:

Discuss the continuity of the cosine, cosecant, secant and cotangent functions.

Solution 22:

It is known that if g and h are two continuous functions, then i. $\frac{h(x)}{g(x)}, g(x) \neq 0$ is continuous $\frac{1}{g(x)}, g(x) \neq 0$ is continuous ii. $\frac{1}{h(x)}, h(x) \neq 0$ is continuous iii. It has to be proved first that $g(x) = \sin x$ and $h(x) = \cos x$ are continuous functions. Let $g(x) = \sin x$ It is evident that $g(x) = \sin x$ is defined for every real number. Let *c* be a real number. Put x = c + hIf $x \rightarrow c$, then $h \rightarrow 0$ $g(c) = \sin x$ $\lim_{x \to c} g(c) = \limsup_{x \to c} x$ $= \lim_{h \to 0} \sin(c+h)$ $=\lim_{k\to 0} \left[\sin c \cosh + \cos c \sinh \right]$ $= \lim_{h \to 0} (\sin c \cosh) + \lim_{h \to 0} (\cos c \sinh)$ $=\sin c\cos 0 + \cos c\sin 0$ $=\sin c + 0$ $= \sin c$ $\therefore \lim g(x) = g(c)$ Therefore, g is a continuous function. Let $h(x) = \cos x$ It is evident that $h(x) = \cos x$ is defined for every real number. Let *c* be a real number. Put x = c + hIf $x \rightarrow c$, then $h \rightarrow 0$ x $h(c) = \cos c$ $\lim h(x) = \lim \cos x$ $x \rightarrow c$ $x \rightarrow c$

$$= \lim_{h \to 0} \cos(c+h)$$

$$= \lim_{h \to 0} [\cos c \cosh - \sin c \sinh]$$

$$= \lim_{h \to 0} \cos c \cosh - \lim_{h \to 0} \sin c \sinh$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \cos 0 - \sin c \sin 0$$

$$= \cos c \cos c \sin c \sin 0$$

$$= \cos c \cos c$$

$$\therefore \lim_{x \to c} h(x) = h(c)$$
Therefore, $h(x) = \cos x$ is continuous function.
It can be concluded that,

$$\cos ec x = \frac{1}{\sin x}, \sin x \neq 0 \text{ is continuous}$$

$$\Rightarrow \cos ec x, x \neq n\pi (n \in Z) \text{ is continuous}$$
Therefore, secant is continuous except at $X = np, nIZ$

$$\sec x = \frac{1}{\cos x}, \cos x \neq 0 \text{ is continuous}$$
Therefore, secant is continuous except at $x = (2n+1)\frac{\pi}{2}(n \in Z)$
Therefore, secant is continuous except at $x = (2n+1)\frac{\pi}{2}(n \in Z)$

$$\cot x = \frac{\cos x}{\sin x}, \sin x \neq 0 \text{ is continuous}$$

Therefore, cotangent is continuous except at x = np, \hat{nIZ}

Question 23:

Find the points of discontinuity of f, where $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0\\ x+1, & \text{if } x \ge 0 \end{cases}$

Solution 23:

The given function f is $f(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0\\ x+1, & \text{if } x \ge 0 \end{cases}$

It is evident that f is defined at all points of the real line. Let c be a real number. Case I: If c < 0, then $f(c) = \frac{\sin c}{c}$ and $\lim_{x \to c} f(x) = \lim_{x \to c} \left(\frac{\sin x}{x} \right) = \frac{\sin c}{c}$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points x, such that x < 0Case II: If c > 0, then f(c) = c + 1 and $\lim_{x \to c} f(x) = \lim_{x \to c} (x+1) = c + 1$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points x, such that x > 0Case III: If c = 0, then f(c) = f(0) = 0 + 1 = 1The left hand limit of f at x = 0 is, $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{\sin x}{x} = 1$ The right hand limit of f at x = 0 is, $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x+1) = 1$ $\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$ Therefore, f is continuous at x=0

From the above observations, it can be conducted that f is continuous at all points of the real line.

Thus, f has no point of discontinuity.

Question 24:
Determine if f defined by
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 is a continuous function?

Solution 24:

The given function f is $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{if } \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ It is evident that f is defined at all points of the real line. Let *c* be a real number. Case I: If $c \neq 0$, then $f(c) = c^2 \sin \frac{1}{c}$ $\lim_{x \to c} f(x) = \lim_{x \to c} \left(x^2 \sin \frac{1}{x} \right) = \left(\lim_{x \to c} x^2 \right) \left(\limsup_{x \to c} \frac{1}{x} \right) = c^2 \sin \frac{1}{c}$ $\therefore \lim f(x) = f(c)$ Therefore, f is continuous at all points $x \neq 0$ Case II: If c=0, then f(0)=0 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(x^{2} \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^{2} \sin \frac{1}{2} \right)$ It is known that, $-1 \le \sin \frac{1}{x} \le 1$, $x \ne 0$ $\Rightarrow -x^2 \le \sin \frac{1}{x} \le x^2$ $\Rightarrow \lim_{x \to 0} \left(-x^2 \right) \le \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) \le \lim_{x \to 0} x^2$ $\Rightarrow 0 \le \lim \left(x^2 \sin \frac{1}{x} \right) \le 0$

$$\Rightarrow \lim_{x \to 0} \left(\begin{array}{c} x \end{array} \right)$$

$$\Rightarrow \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = 0$$

$$\therefore \lim_{x \to 0^-} f(x) = 0$$

Similarly,
$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(x^2 \sin \frac{1}{x} \right) = \lim_{x \to 0} \left(x^2 \sin \frac{1}{x} \right) = 0$$

 $\therefore \lim_{x \to 0^{-}} f(x) = f(0) = \lim_{x \to 0^{+}} f(x)$

Therefore, f is continuous at x=0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

Chapter 5 Continuity and Differentiability

Question 25:

Examine the continuity of f, where f is defined by $f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$

Solution 25:

The given function f is
$$f(x) = \begin{cases} \sin x - \cos x, & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$

It is evident that f is defined at all points of the real line.

Let c be a real number. Case I: If $c \neq 0$, then $f(c) = \sin c - \cos c$ $\lim_{x \to c} f(x) = \lim_{x \to c} (\sin x - \cos x) = \sin c - \cos c$ $\therefore \lim_{x \to c} f(x) = f(c)$ Therefore, f is continuous at al points x, such that $x \neq 0$ Case II: If c = 0, then f(0) = -1 $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0} (\sin x - \cos x) = \sin 0 - \cos 0 = 0 - 1 = -1$ $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} (\sin x - \cos x) = \sin 0 - \cos 0 = 0 - 1 = -1$ $\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0)$ Therefore, f is continuous at x = 0

From the above observations, it can be concluded that f is continuous at every point of the real line.

Thus, f is a continuous function.

Question 26:

Find the values of k so that the function f is continuous at the indicated point.

$$f(x) \begin{cases} \frac{k\cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases} \quad atx = \frac{\pi}{2}$$

Solution 26:

Chapter 5 Continuity and Differentiability

The given function f is $f(x) \begin{cases} \frac{k \cos x}{\pi - 2x}, & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$
The given function f is continuous at $x = \frac{\pi}{2}$, it is defined at $x = \frac{\pi}{2}$ and if the value of the f at
$x = \frac{\pi}{2}$ equals the limit of f at $x = \frac{\pi}{2}$.
It is evident that f is defined at $x = \frac{\pi}{2}$ and $f\left(\frac{\pi}{2}\right) = 3$
$\lim_{x \to \infty} \frac{\pi}{2} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x}$
Put $x = \frac{\pi}{2} + h$
Then, $x \to \frac{\pi}{2} \Longrightarrow h \to 0$
$\therefore \lim_{x \to \frac{\pi}{2}} f(x) = \lim_{x \to \frac{\pi}{2}} \frac{k \cos x}{\pi - 2x} = \lim_{h \to 0} \frac{k \cos\left(\frac{\pi}{2} + h\right)}{\pi - 2\left(\frac{\pi}{2} + h\right)}$
$= k \lim_{h \to 0} \frac{-\sinh}{-2h} = \frac{k}{2} \lim_{h \to 0} \frac{\sinh}{h} = \frac{k}{2} \cdot 1 = \frac{k}{2}$
$\therefore \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right)$
$\Rightarrow \frac{k}{2} = 3$
$\Rightarrow k = 6$
Therefore, the required value of k is 6.

Question 27:

Find the values of k so that the function f is continuous at the indicated point.

$$f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases} \text{ at } x = 2$$

Solution 27:

Chapter 5 Continuity and Differentiability

The given function is $f(x) = \begin{cases} kx^2, & \text{if } x \le 2\\ 3, & \text{if } x > 2 \end{cases}$

The given function f is continuous at x=2, if f is defined at x=2 and if the value of f at x=2 equals the limit of f at x=2

It is evident that f is defined at x = 2 and $f(2) = k(2)^2 = 4k$

$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{+}} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^{-}} (kx^{2}) = \lim_{x \to 2^{+}} (3) = 4k$$

$$\Rightarrow k \ge 2^{2} = 3 = 4k$$

$$\Rightarrow 4k = 3 = 4k$$

$$\Rightarrow 4k = 3$$

$$\Rightarrow k = \frac{3}{4}$$

Therefore, the required value of $k \operatorname{is} \frac{3}{4}$

Question 28:

Find the values of k so that the function f is continuous at the indicated point. $f(x) = \begin{cases} kx+1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases} \text{ at } x = \pi$

Solution 28:

The given function is $f(x) = \begin{cases} kx+1, & \text{if } x \le \pi \\ \cos x, & \text{if } x > \pi \end{cases}$

The given function f is continuous at $x = \pi$ and, if f is defined at $x = \pi$ and if the value of f at $x = \pi$ equals the limit of f at $x = \pi$

It is evident that f is defined at $x = \pi$ and $f(\pi) = k\pi + 1$

 $\lim_{x \to \pi^-} f(x) = \lim_{x \to \pi^+} f(x) = f(\pi)$ $\Rightarrow \lim_{x \to \pi^-} (kx+1) = \lim_{x \to \pi^+} \cos x = k\pi + 1$ $\Rightarrow k\pi + 1 = \cos \pi = k\pi + 1$ $\Rightarrow k\pi + 1 = -1 = k\pi + 1$ $\Rightarrow k\pi + 1 = -1 = k\pi + 1$ $\Rightarrow k = -\frac{2}{\pi}$ Therefore, the required value of k is $-\frac{2}{\pi}$.

Question 29:

Find the values of k so that the function f is continuous at the indicated point. $f(x) = \begin{cases} kx+1, & \text{if } x \le 5\\ 3x-5, & \text{if } x > 5 \end{cases} \text{ at } x = 5$

Solution 29:

The given function of f is $f(x) = \begin{cases} kx+1, & \text{if } x \le 5\\ 3x-5, & \text{if } x > 5 \end{cases}$

The given function f is continuous at x=5, if f is defined at x=5 and if the value of f at x=5 equals the limit of f at x=5

It is evident that f is defined at x=5 and f(5)=kx+1=5k+1

$$\lim_{x \to 5^-} f(x) = \lim_{x \to 5^+} f(x) = f(5)$$

$$\Rightarrow \lim_{x \to 5^-} (kx+1) = \lim_{x \to 5^+} (3x-5) = 5k+1$$

$$\Rightarrow 5k+1 = 15-5 = 5k+1$$

$$\Rightarrow 5k+1 = 10$$

$$\Rightarrow 5k = 9$$

$$\Rightarrow k = \frac{9}{5}$$

Therefore, the required value of k is $\frac{9}{5}$

Question 30:

Find the values of *a* and *b* such that the function defined by $f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax+b, \text{if } 2 < x < 10 \text{ is a}\\ 21 & \text{if } x \ge 10 \end{cases}$

continuous function.

Solution 30:

The given function f is $f(x) = \begin{cases} 5, & \text{if } x \le 2\\ ax+b, & \text{if } 2 < x < 10\\ 21 & \text{if } x \ge 10 \end{cases}$

It is evident that the given function f is defined at all points of the real line. If f is a continuous function, then f is continuous at all real numbers.

In particular, f is continuous at x = 2 and x = 10

Since f is continuous at x = 2, we obtain

$$\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = f(2)$$

$$\Rightarrow \lim_{x \to 2^-} (5) = \lim_{x \to 2^+} (ax+b) = 5$$

$$\Rightarrow 5 = 2a+b=5$$

$$\Rightarrow 2a+b=5$$
....(1)
Since f is a continuous at x=10, we obtain
$$\lim_{x \to 10^-} f(x) = \lim_{x \to 10^+} f(x) = f(10)$$

$$\Rightarrow \lim_{x \to 10^-} (ax+b) = \lim_{x \to 10^+} (21) = 21$$

$$\Rightarrow 10a+b-21 = 21$$

$$\Rightarrow 10a+b=21$$
.....(2)
On subtracting equation (1) from equation (2), we obtain
$$8a = 16$$

$$\Rightarrow a = 2$$
By putting a = 2 in equation (1), we obtain
$$2 \times 2 + b = 5$$

$$\Rightarrow b = 1$$

Therefore, the values of a and b for which f is a continuous function are 2 and 1 respectively.

Question 31:

Show that the function defined by $f(x) = \cos(x^2)$ is a continuous function.

Solution 31:

The given function is $f(x) = \cos(x^2)$

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = g \ o \ h, \text{where} \ g(x) = \cos x \ and \ h(x) = x^2$$
$$\left[\because (goh)(x) = g(h(x)) = g(x^2) = \cos(x^2) = f(x) \right]$$

It has to be first proved that $g(x) = \cos x$ and $h(x) = x^2$ are continuous functions.

It is evident that g is defined for every real number.

Let *c* be a real number. Then $c(a) = \cos a$

Then,
$$g(c) = \cos c$$

Put $x = c + h$
If $x \to c$, then $h \to 0$
 $\lim_{x \to c} g(x) = \lim_{x \to c} \cos x$
 $= \lim_{h \to 0} \cos(c + h)$
 $= \lim_{h \to 0} [\cos c \cosh - \sin c \sinh]$
 $= \lim_{h \to 0} \cos c \cosh - \lim_{h \to 0} c inc \sinh$
 $= \cos c \cos 0 - \sin c \sin 0$
 $= \cos c \times 1 - \sin c \times 0$
 $= \csc$
 $\therefore \lim_{x \to c} g(x) = g(c)$
Therefore, $g(x) = \cos x$ is a continuous function.
 $h(x) = x^2$
Clearly, h is defined for every real number.
Let k be a real number, then $h(k) = k^2$

$$\lim_{x \to k} h(x) = \lim_{x \to k} x^2 = k^2$$

$$\therefore \lim_{x \to k} h(x) = h(k)$$

Therefore, h is a continuous function.

It is known that for real valued functions g and h, such that $(g \circ h)$ is defined at c, it g is

Chapter 5 Continuity and Differentiability

continuous at c and it f is continuous at g(c), then $(f \circ h)$ is continuous at c. Therefore, $f(x) = (g \circ h)(x) = \cos(x^3)$ is a continuous function.

Question 32:

Show that the function defined by $f(x) = |\cos x|$ is a continuous function.

Solution 32:

The given function is $f(x) = |\cos x|$

This function f is defined for every real number and f can be written as the composition of two functions as,

$$f = g o h$$
, where $g(x) = |x|$ and $h(x) = \cos x$

$$\left[\because (goh)(x) = g(h(x)) = g(\cos x) = |\cos x| = f(x)\right]$$

It has to be first proved that g(x) = |x| and $h(x) = \cos x$ are continuous functions.

$$g(x) = |x|$$
, can be written as

$$g(x) = \begin{cases} -x, & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Clearly, g is defined for all real numbers.

Let c be a real number.

Case I:

If
$$c < 0$$
, then $g(c) = -c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, *g* is continuous at all points *x*, such that x < 0*Case II*:

If
$$c > 0$$
, then $g(c) = c$ and $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$

$$\therefore \lim_{x \to c} g(x) = g(c)$$

Therefore, g is continuous at all points x, such that x > 0Case III:

If
$$c = 0$$
, then $g(c) = g(0) = 0$
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$$

 $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} (x) = 0$ $\therefore \lim_{x \to \infty} g(x) = \lim_{x \to \infty} g(x) = g(0)$ Therefore, g is continuous at x = 0From the above three observations, it can be concluded that g is continuous at all points. $h(x) = \cos x$ It is evident that $h(x) = \cos x$ is defined for every real number. Let *c* be a real number. Put x = c + hIf $x \rightarrow c$, the $h \rightarrow 0$ $h(c) = \cos c$ $\lim_{x \to c} h(x) = \lim_{x \to c} \cos x$ $=\lim_{h\to 0}\cos(c+h)$ $= \lim_{h \to 0} \left[\cos c \cosh - \sin c \sinh \right]$ $= \lim_{h \to 0} \cos c \cosh - \lim_{h \to 0} \sin \sinh \theta$ $= \cos c \cos 0 - \sin c \sin 0$ $= \cos c \mathbf{x} \mathbf{1} - \sin c \mathbf{x} \mathbf{0}$ $= \cos c$ $\therefore \lim h(x) = h(c)$ Therefore, $h(x) = \cos x$ is a continuous function. It is known that fir real valued functions g and h, such that $(g \circ h)$ is defined at c, if g is continuous at c and if f is continuous at g(c), then $(f \circ g)$ is continuous at c. Therefore, f(x) = (goh)(x) = g(h(x)) = g(cox) = |cosx| is a continuous function.

Question 33:

Examine that $\sin |x|$ is a continuous function.

Solution 33:

Let $f(x) = \sin|x|$

This function f is defined for every real number and f cane be written as the composition of two functions as,

f = g o h, where g(x) = |x| and $h(x) = \sin x$

Chapter 5 Continuity and Differentiability

 $\left[\because (goh)(x) = g(h(x)) = g(\sin x) = |\sin x| = f(x)\right]$ It has to be prove first that g(x) = |x| and $h(x) = \sin x$ are continuous functions. g(x) = |x| can be written as $g(x) \begin{cases} -x, if \ x < 0 \\ x \ if \ x \ge 0 \end{cases}$ Clearly, g is defined for all real numbers. Let *c* be a real number. Case I: If c < 0 g(c) = -c and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$ $\therefore \lim_{x \to c} g(x) = g(c)$ Therefore, g is continuous at all points x, that x < 0Case II: If c > 0, then g(c) = c and $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$ $\therefore \lim_{x \to c} g(x) = g(c)$ Therefore, g is continuous at all points x, such that x > 0Case III: If c = 0, then g(c) = g(0) = 0 $\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$ $\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} (x) = 0$ $\therefore \lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} (x) = g(0)$ Therefore, g is continuous at x=0From the above three observations, it can be concluded that g is continuous at all points. $h(x) = \sin x$ It is evident that $h(x) = \sin x$ is defined for every real number. Let *c* be a real number. Put x = c + kIf $x \rightarrow c$, then $k \rightarrow 0$ $h(c) = \sin c$ $\lim h(x) = \limsup x$

 $= \limsup_{k \to o} \sin(c+k)$ $= \lim_{k \to o} [\sin c \cos k + \cos c \sin k]$ $= \lim_{k \to o} (\sin c \cos k) + \lim_{h \to o} (\cos c \sin k)$ $= \sin c \cos 0 + \cos c \sin 0$ $= \sin c + 0$ $= \sin c$ $\therefore \lim_{x \to c} h(x) = g(c)$

Therefore, h is a continuous function,

It is known that for real valued functions g and h, such that $(g \circ h)$ is defined at c, if g is continuous at c and if f is continuous at g(c), then $(f \circ h)$ is continuous at c. Therefore, $f(x) = (g \circ h)(x) = g(h(x)) = g(\sin x) = |\sin x|$ is a continuous function.

Question 34:

Find all the points of discontinuity of f defined by f(x) = |x| - |x+1|.

Solution 34:

The given function is f(x) = |x| - |x+1|. The two functions, g and h, are defined as g(x) = |x| and h(x) = |x+1|Then, f = g - hThe continuous of g and h is examined first. g(x) = |x| can be written as $g(x) = \begin{cases} -x, if \ x < 0 \\ x, if \ x \ge 0 \end{cases}$ Clearly, g is defined for all real numbers. Let c be a real number. *Case I*: If c < 0, then g(c) = g(0) = -c and $\lim_{x \to c} g(x) = \lim_{x \to c} (-x) = -c$ $\therefore \lim_{x \to c} g(x) = g(c)$ Therefore, g is continuous at all points x, such that x < 0

Case II: If c > 0, then g(c) = c $\lim_{x \to c} g(x) = \lim_{x \to c} x = c$ $\therefore \lim_{x \to c} g(x) = g(c)$ Therefore, g is continuous at all points x, such that x > 0Case III: If c = 0, then g(c) = g(0) = 0 $\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} (-x) = 0$ $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} g(x) = 0$ $\therefore \lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} (x) = g(0)$ Therefore, g is continuous at x=0From the above three observations, it can be concluded that g is continuous at all points. h(x) = |x+1| can be written as $h(x) = \begin{cases} -(x+1), & \text{if}, x < -1 \\ x+1, & \text{if}, x \ge -1 \end{cases}$ Clearly, *h* is defined for every real number. Let c be a real number. Case I: If c < -1, then h(c) = -(c+1) and $\lim_{x \to c} h(x) = \lim_{x \to c} [-(x+1)] = -(c+1)$ $\therefore \lim h(x) = h(c)$ Therefore, *h* is continuous at all points *x*, such that x < -1Case II: If c > -1, then h(c) = c + 1 and $\lim_{x \to c} h(x) = \lim_{x \to c} (x+1) = (c+1)$ $\therefore \lim h(x) = h(c)$ Therefore, h is continuous at all points x, such that x > -1Case III: If c = -1, then h(c) = h(-1) = -1 + 1 = 0 $\lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{-}} \left[-(x+1) \right] = -(-1+1) = 0$ $\lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} (x+1) = (-1+1) = 0$ $\therefore \lim_{x \to 1^-} h = \lim_{x \to 1^+} h(x) = h(-1)$ Therefore, *h* is continuous at x = -1
From the above three observations, it can be concluded that h is continuous at all points of the real line.

g and h are continuous functions. Therefore, f = g - h is also a continuous function.

Therefore, *f* has no point of discontinuity.

Exercise 5.2

Question 1:

Differentiate the function with respect to x. $sin(x^2+5)$

Solution 1:

Let $f(x) = \sin(x^2+5)$, $u(x) = x^2+5$, and $v(t) = \sin t$ Then, $(vou)(x) = v(u(x)) = v(x^2+5) = \tan(x^2+5) = f(x)$

Thus, f is a composite of two functions.

Put
$$t = u(x) = x^2 + 5$$

Then, we obtain

$$\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos\left(x^2 + 5\right)$$
$$\frac{dt}{dx} = \frac{d}{dx}\left(x^2 + 5\right) = \frac{d}{dx}\left(x^2\right) + \frac{d}{dx}\left(5\right) = 2x + 0 = 2x$$

Therefore, by chain rule. $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos(x^2 + 5)x \ 2x = 2x\cos(x^2 + 5)$

Alternate method

$$\frac{d}{dx}\left[\sin\left(x^2+5\right)\right] = \cos\left(x^2+5\right) \cdot \frac{d}{dx}\left(x^2+5\right)$$
$$= \cos\left(x^2+5\right) \cdot \left[\frac{d}{dx}\left(x^2\right) + \frac{d}{dx}\left(5\right)\right]$$
$$= \cos\left(x^2+5\right) \cdot \left[2x+0\right]$$
$$= 2x\cos\left(x^2+5\right)$$

Question 2:

Differentiate the functions with respect of x. $\cos(\sin x)$

Solution 2:

Let $f(x) = \cos(\sin x), u(x) = \sin x$, and $v(t) = \cos t$ Then, $(vou)(x) = v(u(x)) = v(\sin x) = \cos(\sin x) = f(x)$ Thus, f is a composite function of two functions. Put $t = u(x) = \sin x$ $\therefore \frac{dv}{dt} = \frac{d}{dt} [\cos t] = -\sin t = -\sin(\sin x)$ $\frac{dt}{dx} = \frac{d}{dx} (\sin x) = \cos x$ By chain rule, $\frac{df}{dx}, \frac{dv}{dt}, \frac{dt}{dx} = -\sin(\sin x).\cos x = -\cos x \sin(\sin x)$ Alternate method

$$\frac{d}{dx}\left[\cos(\sin x)\right] = -\sin(\sin x) \cdot \frac{d}{dx}(\sin x) = -\sin(\sin x) - \cos x = -\cos x \sin(\sin x)$$

Question 3: Differentiate the functions with respect of x . sin(ax+b)

Solution 3: Let $f(x) = \sin(ax+b), u(x) = ax+b$, and $v(t) = \sin t$ Then, $(vou)(x) = v(u(x)) = v(ax+b) = \sin(ax+b) = f(x)$ Thus, f is a composite function of two functions u and v. Put t = u(x) = ax+bTherefore, $\frac{dv}{dt} = \frac{d}{dt}(\sin t) = \cos t = \cos(ax+b)$ $\frac{dt}{dx} = \frac{d}{dx}(ax+b) = \frac{d}{dx}(ax) + \frac{d}{dx}(b) = a+0 = a$ Hence, by chain rule, we obtain $\frac{df}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos(ax+b) \cdot a = a\cos(ax+b)$ Alternate method $\frac{d}{dx} \left[\sin(ax+b) \right] = \cos(ax+b) \cdot \frac{d}{dx} (ax+b)$ $= \cos(ax+b) \cdot \left[\frac{d}{dx} (ax) + \frac{d}{dx} (b) \right]$ $= \cos(ax+b) \cdot (a+0)$ $= a\cos(ax+b)$

Question 4:

Differentiate the functions with respect of x. $\sec(\tan(\sqrt{x}))$

Solution 4:

Let
$$f(x) = \sec(\tan(\sqrt{x})), u(x) = \sqrt{x}, v(t) = \tan t$$
, and $w(s) = \sec s$
Then, $(wovou)(x) = w[v(u(x))] = w[v(\sqrt{x})] = w(\tan\sqrt{x}) = \sec(\tan\sqrt{x}) = f(x)$
Thus, f is a composite function of three functions, u , v and w .
Put $s = v(t) = \tan t$ and $t = u(x) = \sqrt{x}$
Then, $\frac{dw}{ds} = \frac{d}{ds}(\sec s) = \sec s \tan s = \sec(\tan t) \cdot \tan(\tan t)$ $[s = \tan t]$
 $= \sec(\tan\sqrt{x}) \cdot \tan(\tan\sqrt{x})$ $[t = \sqrt{x}]$
 $\frac{ds}{dt} = \frac{d}{dt}(\tan t) = \sec^2 t = \sec^2 \sqrt{x}$
 $\frac{dt}{dx} = \frac{d}{dx}(\sqrt{x}) = \frac{d}{dx}\left(x^{\frac{1}{2}}\right) = \frac{1}{2} \cdot x^{\frac{1}{2}-1} = \frac{1}{2\sqrt{x}}$
Hence, by chain rule, we obtain
 $\frac{dt}{dx} = \frac{dw}{ds} \cdot \frac{ds}{dt} \cdot \frac{dt}{dx}$
 $= \sec(\tan\sqrt{x}) \cdot \tan(\tan\sqrt{x}) x \sec^2\sqrt{x} x \frac{1}{2\sqrt{x}}$

$$= \frac{1}{2\sqrt{x}} \sec^2 \sqrt{x} (\tan \sqrt{x}) \tan(\tan \sqrt{x})$$

$$= \frac{\sec^2 \sqrt{x} \sec(\tan \sqrt{x}) \tan(\tan \sqrt{x})}{2\sqrt{x}}$$
Alternate method
$$\frac{d}{dx} [\sec(\tan \sqrt{x})] = \sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \frac{d}{dx} (\tan \sqrt{x})$$

$$= \sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \sec^2(\sqrt{x}) \cdot \frac{d}{dx} (\sqrt{x}).$$

$$= \sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \sec^2(\sqrt{x}) \cdot \frac{1}{2\sqrt{x}}$$

$$= \frac{\sec(\tan \sqrt{x}) \cdot \tan(\tan \sqrt{x}) \cdot \sec^2(\sqrt{x})}{2\sqrt{x}}$$

Question 5:

Differentiate the functions with respect of X.

 $\frac{\sin(ax+b)}{\cos(cx+d)}$

Solution 5:

The given function is $f(x) = \frac{\sin(ax+b)}{\cos(cx+d)} = \frac{g(x)}{h(x)}$, where $g(x) = \sin(ax+b)$ and $h(x) = \cos(cx+d)$ $\therefore f = \frac{g'h - gh'}{h^2}$ Consider $g(x) = \sin(ax+b)$ Let u(x) = ax+b, $v(t) = \sin t$ Then $(vou)(x) = v(u(x)) = v(ax+b) = \sin(ax+b) = g(x)$ $\therefore g$ is a composite function of two functions, u and v. Put t = u(x) = ax+b

$$\frac{dv}{dt} = \frac{d}{dt} (\sin t) = \cos t = \cos(ax+b)$$

$$\frac{dt}{dx} = \frac{d}{dt} (ax+b) = \frac{d}{dx} (ax) + \frac{d}{dx} (b) = a+0 = a$$
Therefore, by chain rule, we obtain
$$g' = \frac{dg}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx} = \cos(ax+b) \cdot a = a\cos(ax+b)$$
Consider $h(x) = \cos(cx+d)$
Let $p(x) = cx+d$, $q(y) = \cos y$
Then, $(qop)(x) = q(p(x)) = q(cx+d) = \cos(cx+d) = h(x)$
 $\therefore h$ is a composite function of two functions, p and q .
Put $y = p(x) = cx+d$

$$\frac{dq}{dy} = \frac{d}{dy} (\cos y) = -\sin y = -\sin(cx+d)$$

$$\frac{dy}{dx} = \frac{d}{dx} (cx+d) = \frac{d}{dx} (cx) + \frac{d}{dx} (d) = c$$
Therefore, by chain rule, we obtain
$$h' = \frac{dh}{dx} = \frac{dq}{dy} \cdot \frac{dy}{dx} = -\sin(cx+d) \operatorname{sc}(-c\sin(cx+d))$$
 $\therefore f' = \frac{a\cos(ax+b)}{\cos(cx+d)} + c\sin(ax+b) \cdot \frac{\sin(cx+d)}{\cos(cx+d)} \times \frac{1}{\cos(cx+d)}$

$$= a\cos(ax+b) \sec(cx+d) + c\sin(ax+b) \tan(cx+d) \sec(cx+d)$$

Question 6: Differentiate the function with respect to x. $\cos x^3 \cdot \sin^2(x^5)$

Solution 6:

Chapter 5 Continuity and Differentiability

$$\cos x^{3} \cdot \sin^{2}(x^{5})$$

$$\frac{d}{dx} \Big[\cos x^{3} \cdot \sin^{2}(x^{5}) \Big] = \sin^{2}(x^{5}) x \frac{d}{dx} \Big(\cos x^{3} \Big) + \cos x^{3} x \frac{d}{dx} \Big[\sin^{2}(x^{5}) \Big]$$
The given function is
$$= \sin^{2}(x^{5}) x \Big(-\sin x^{3} \Big) x \frac{d}{dx} \Big(x^{3} \Big) + \cos x^{3} + 2\sin(x^{5}) \cdot \frac{d}{dx} \Big[\sin x^{5} \Big]$$

$$= \sin x^{3} \sin^{2}(x^{5}) x 3x^{2} + 2\sin x^{5} \cos x^{3} \cdot \cos x^{5} x \frac{d}{dx} \Big(x^{5} \Big)$$

$$= 3x^{2} \sin x^{3} \cdot \sin^{3}(x^{5}) + 2\sin x^{5} \cos x^{5} \cos x^{3} \cdot x 5x^{4}$$

$$= 10x^{4} \sin x^{5} \cos x^{5} \cos x^{3} - 3x^{2} \sin x^{3} \sin^{2}(x^{5})$$

Question 7:

Differentiate the functions with respect to x.

$$2\sqrt{\cot(x^2)}$$
Solution 7:

$$\frac{d}{dx} \Big[2\sqrt{\cot(x^2)} \Big]$$

$$= 2 \cdot \frac{1}{2\sqrt{\cot(x^2)}} x \frac{d}{dx} \Big[\cot(x^2) \Big]$$

$$= \sqrt{\frac{\sin(x^2)}{\cos(x^2)}} x \cdot \csc^2(x^2) x \frac{d}{dx}(x^2)$$

$$= \sqrt{\frac{\sin(x^2)}{\cos(x^2)}} x \frac{1}{\sin^2(x^2)} x(2x)$$

$$= \frac{-2x}{\sqrt{\cos x^2} \sqrt{\sin x^2 \sin x^2}}$$

$$= \frac{-2\sqrt{2x}}{\sqrt{2 \sin x^2 \cos x^2} \sin x^2}$$

$$= \frac{-2\sqrt{2x}}{\sin x^2 \sqrt{\sin 2x^2}}$$

Question 8:

Differentiate the functions with respect to x

$$\cos(\sqrt{x})$$

Solution 8:

Let
$$f(x) = \cos(\sqrt{x})$$

Also, let $u(x) = \sqrt{x}$
And, $v(t) = \cos t$
Then, $(vou)(x) = v(u(x))$
 $= v(\sqrt{x})$
 $= \cos \sqrt{x}$
 $= f(x)$

Clearly, *f* is a composite function of two functions, *u* and *v*, such that $t = u(x) = \sqrt{x}$

Then,

$$\frac{dt}{dx} = \frac{d}{dx} \left(\sqrt{x}\right) = \frac{d}{dx} \left(x^{\frac{1}{2}}\right)$$
$$\frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$$

And,
$$\frac{dv}{dt} = \frac{d}{dt} (\cos t) = -\sin t = -\sin \sqrt{x}$$

By using chain rule, we obtain

 $\frac{dt}{dx} = \frac{dv}{dt} \cdot \frac{dt}{dx}$ $= -\sin\left(\sqrt{x}\right) \cdot \frac{1}{2\sqrt{x}}$ $= -\frac{1}{2\sqrt{x}}\sin\left(\sqrt{x}\right)$ $= -\frac{\sin\left(\sqrt{x}\right)}{2\sqrt{x}}$ Alternate method

$$\frac{d}{dx} \left[\cos\left(\sqrt{x}\right) \right] = -\sin\left(\sqrt{x}\right) \cdot \frac{d}{dx} \left(\sqrt{x}\right)$$
$$= -\sin\left(\sqrt{x}\right) \times \frac{d}{dx} \left(x^{\frac{1}{2}}\right)$$
$$= -\sin\sqrt{x} \times \frac{1}{2} x^{-\frac{1}{2}}$$
$$= \frac{-\sin\sqrt{x}}{2\sqrt{x}}$$

Question 9:

Prove that the function f given by

 $f(x) = |x-1|, x \in \mathbf{R}$ is not differentiable at x=1.

Solution 9:

The given function is $f(x) = |x-1|, x \in \mathbf{R}$

It is known that a function f is differentiable at a point x = c in its domain if both

 $\lim_{k \to 0^{-}} \frac{f(c+h) - f(c)}{h} \text{ and } \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h} \text{ are finite and equal.}$

To check the differentiability of the given function at x=1,

Consider the left hand limit of f at x=1

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{f|I+h-1||1-1|}{h}$$
$$= \lim_{h \to 0^{-}} \frac{|h| - 0}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} \qquad (h < 0 \Longrightarrow |h| = -h)$$
$$= -1$$

Consider the right hand limit of f at x=1

$$\lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{+}} \frac{f|I+h-1| - |1-1|}{h}$$
$$= \lim_{h \to 0^{+}} \frac{|h| - 0}{h} = \lim_{h \to 0^{+}} \frac{h}{h}$$
$$(h > 0 \Longrightarrow |h| = h)$$
$$= 1$$

Since the left and right hand limits of f at x=1 are not equal, f is not differentiable at x=1

Question 10:

Prove that the greatest integer function defined by f = (x) = [x], 0 < x < 3 is not differentiable at x = 1 and x = 2.

Solution 10:

The given function f is f = (x) = [x], 0 < x < 3

It is known that a function f is differentiable at a point x = c in its domain if both $\lim_{h \to 0^{-}} \frac{f(c+h) - f(c)}{h} \text{ and } \lim_{h \to 0^{+}} \frac{f(c+h) - f(c)}{h} \text{ are finite and equal.}$

To check the differentiable of the given function at x=1, consider the left hand limit of f at x=1

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{[1+h] - [1]}{h}$$
$$= \lim_{h \to 0^{-}} \frac{0 - 1}{h} = \lim_{h \to 0^{-}} = \frac{-1}{h} = \infty$$

Consider the right hand limit of f at x=1

$$\lim_{h \to 0^{+}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{+}} \frac{[1+h][1]}{h}$$
$$= \lim_{h \to 0^{+}} \frac{1-1}{h} = \lim_{h \to 0^{+}} 0 = 0$$

Since the left and right limits of f at x=1 are not equal, f is not differentiable at x=1

To check the differentiable of the given function at x=2, consider the left hand limit of f at x=2

$$\lim_{h \to 0^{-}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{-}} \frac{[2+h] - [2]}{h}$$
$$= \lim_{h \to 0^{-}} \frac{1-2}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$
Consider the right hand limit of f at $x = 1$
$$\lim_{h \to 0^{+}} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0^{+}} \frac{[2+h] - [2]}{h}$$
$$= \lim_{h \to 0^{+}} \frac{1-2}{h} = \lim_{h \to 0^{+}} 0 = 0$$

Since the left and right hand limits of f at x = 2 are not equal, f is not differentiable at x = 2

Exercise 5.3

Question 1: Find $\frac{dy}{dx}$: $2x + 3y = \sin x$

Solution 1:

The given relationship is $2x + 3y = \sin x$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dy}(2x+3y) = \frac{d}{dx}(\sin x)$$
$$\Rightarrow \frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \cos x$$
$$\Rightarrow 2+3\frac{dy}{dx} = \cos x$$
$$\Rightarrow 3\frac{dy}{dx} = \cos x - 2$$
$$\therefore \frac{dx}{dy} = \frac{\cos x - 2}{3}$$

Question 2:

Find
$$\frac{dy}{dx}$$
: $2x + 3y = \sin y$

Solution 2: The given relationship is $2x+3y = \sin y$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(2x) + \frac{d}{dx}(3y) = \frac{d}{dx}(\sin y)$$

$$\Rightarrow 2 + 3\frac{dy}{dx} = \cos y\frac{dy}{dx}$$
[By using chain rule]

$$\Rightarrow 2 = (\cos y - 3)\frac{dy}{dx}$$

$$\therefore \frac{dy}{dx} = \frac{2}{\cos y - 3}$$

Question 3:

Find
$$\frac{dy}{dx}: ax + by^2 = \cos y$$

Solution 3:

The given relationship is $ax + by^2 = \cos y$ Differentiating this relationship with respect to x, we obtain $\frac{d}{dx}(ax) + \frac{d}{dx}(by^2) = \frac{d}{dx}(\cos y)$ $\Rightarrow a + b\frac{d}{dx}(y^2) = \frac{d}{dx}(\cos y)$...(1) Using chain rule, we obtain $\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$ and $\frac{d}{dx}(\cos y) = \sin y\frac{dy}{dx}$ (2)

From (1) and (2), we obtain

$$a + bx \quad 2y \frac{dy}{dx} = -\sin y \frac{dy}{dx}$$
$$\Rightarrow (2by + \sin y) \frac{dy}{dx} = -a$$
$$\therefore \frac{dy}{dx} = \frac{-a}{2by + \sin y}$$

Question 4:

Find
$$\frac{dy}{dx}$$
: $xy + y^2 = \tan x + y$

Solution 4:

The given relationship is $xy + y^2 = \tan x + y$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(xy+y^2) = \frac{d}{dx}(\tan x + y)$$
$$\Rightarrow \frac{d}{dx}(xy) + \frac{d}{dx}(y^2) = \frac{d}{dx}(\tan x) + \frac{dy}{dx}$$
$$\Rightarrow \left[y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx}\right] + 2y \frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$

[using product rule and chain rule]

$$\Rightarrow y.1 + x\frac{dy}{dx} + 2y\frac{dy}{dx} = \sec^2 x + \frac{dy}{dx}$$
$$\Rightarrow (x + 2y - 1)\frac{dy}{dx} = \sec^2 x - y$$
$$\therefore \frac{dy}{dx} = \frac{\sec^2 x - y}{(x + 2y - 1)}$$

Question 5:

Find
$$\frac{dy}{dx}$$
: $x^2 + xy + y^2 = 100$

Solution 5:

The given relationship is $x^2 + xy + y^2 = 100$ Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x^{2} + xy + y^{2}) = \frac{d}{dx}(100)$$

$$\Rightarrow \frac{d}{dx}(x^{2}) + \frac{d}{dx}(xy) + \frac{d}{dx}(y^{2}) = 0$$

$$\Rightarrow 2x + \left[y \cdot \frac{d}{dx}(x) + x \cdot \frac{dy}{dx}\right] + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow 2x + y \cdot 1 + x \cdot \frac{dy}{dx} + 2y \frac{dy}{dx} = 0$$

$$\Rightarrow 2x + y + (x + 2y) \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{2x + y}{x + 2y}$$

[Derivative of constant function is 0]

[Using product rule and chain rule]

Question 6:

Find
$$\frac{dy}{dx}$$
: $x^2 + x^2y + xy^2 + y^3 = 81$

Solution 6:

The given relationship is $x^2 + x^2y + xy^2 + y^3 = 81$ Differentiating this relationship with respect to x, we obtain $\frac{d}{dx}(x^3 + x^2y + xy^2y^3) = \frac{d}{dx}(81)$

Chapter 5 Continuity and Differentiability

$$\Rightarrow \frac{d}{dx}(x^3) + \frac{d}{dx}(x^2y) + \frac{d}{dx}(xy)^2 + \frac{d}{dx}(y^3) = 0$$

$$\Rightarrow 3x^2 + \left[y\frac{d}{dx}(x^2) + x^2\frac{dy}{dx}\right] + \left[y^2\frac{d}{dx}(x) + x\frac{d}{dx}(y^2)\right] + 3y^2\frac{dy}{dx} = 0$$

$$\Rightarrow 3x^2 + \left[y.2x + x^2\frac{dx}{dy}\right] + \left[y^2.1 + x.2y.\frac{dy}{dx}\right] + 3y^2\frac{dx}{dy} = 0$$

$$\Rightarrow \left(x^2 + 2xy + 3y^2\right)\frac{dy}{dx} + \left(3x^2 + 2xy + y^2\right) = 0$$

$$\therefore \frac{dy}{dx} = \frac{-\left(3x^2 + 2xy + y^2\right)}{\left(x^2 + 2xy + 3y^2\right)}$$

Question 7:

Find
$$\frac{dx}{dy}$$
: $\sin^2 y + \cos xy = \pi$

Solution 7:

The given relationship is $\sin^2 y + \cos xy = \pi$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin^2 y + \cos xy) = \frac{d}{dx}(\pi)$$

$$\Rightarrow \frac{d}{dx}(\sin^2 y) + \frac{d}{dx}(\cos xy) = 0$$
(1)

Using chain rule, we obtain

$$\frac{d}{dx}(\sin^2 y) = 2\sin y \frac{d}{dx}(\sin y) = 2\sin y \cos y \frac{dy}{dx} \qquad \dots (2)$$

$$\frac{d}{dx}(\cos xy) = -\sin xy \frac{d}{dx}(xy) = -\sin xy \left[y \frac{d}{dx}(x) + x \frac{dy}{dx} \right] \qquad \dots (3)$$

$$= -\sin xy \left[y.1 + x \frac{dy}{dx} \right] = -y \sin xy - x \sin xy \frac{dy}{dx} \qquad \dots (3)$$

From (1), (2) and (3), we obtain
$$2\sin y \cos y \frac{dy}{dx} - y \sin xy - x \sin xy \frac{dy}{dx} = 0$$

$$\Rightarrow (2\sin y \cos y - x \sin xy) \frac{dy}{dx} = y \sin xy$$

$$\Rightarrow (\sin 2y - x \sin xy) \frac{dx}{dy} = y \sin xy$$

Chapter 5 Continuity and Differentiability

 $\therefore \frac{dx}{dy} = \frac{y \sin xy}{\sin 2y - x \sin xy}$

Question 8:

Find
$$\frac{dy}{dx}$$
: $\sin^2 x + \cos^2 y = 1$

Solution 8:

The given relationship is $\sin^2 x + \cos^2 y = 1$ Differentiating this relationship with respect to x, we obtain $\frac{dy}{dx}(\sin^2 x + \cos^2 y) = \frac{d}{dx}(1)$ $\Rightarrow \frac{d}{dx}(\sin^2 x) + \frac{d}{dx}(\cos^2 y) = 0$ $\Rightarrow 2\sin x \cdot \frac{d}{dx}(\sin x) + 2\cos y \cdot \frac{d}{dx}(\cos y) = 0$ $\Rightarrow 2\sin x \cos x + 2\cos y(-\sin y) \cdot \frac{dy}{dx} = 0$ $\Rightarrow \sin 2x - \sin 2y \frac{dy}{dx} = 0$ $\therefore \frac{dx}{dy} = \frac{\sin 2x}{\sin 2y}$

Question 9: Find $\frac{dy}{dx}$: $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

Solution 9:

The given relationship is $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

$$y = \sin^{-1} \left(\frac{2x}{1+x^2} \right)$$

$$\Rightarrow \sin y = \frac{2x}{1+x^2}$$

Differentiating this relationship with respect to x, we obtain

Chapter 5 Continuity and Differentiability

Question 10:

Find
$$\frac{dx}{dy}$$
: $y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right), -\frac{1}{\sqrt{3}} < x < \frac{1}{\sqrt{3}}$

Solution 10:

The given relationship is $y = \tan^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$

Question 11: Find $\frac{dy}{dx}$: $y \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right), 0 < x < 1$

Solution 11: The given relationship is,

$$y = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

Chapter 5 Continuity and Differentiability

$$\Rightarrow \cos y = \frac{1 - x^2}{1 + x^2}$$
$$\Rightarrow \frac{1 - \tan^2 \frac{y}{2}}{1 + \tan^2 \frac{y}{2}} = \frac{1 - x^2}{1 + x^2}$$

On comparing L.H.S. and R.H.S. of the above relationship, we obtain

$$\tan \frac{y}{2} = x$$

Differentiating this relationship with respect to x, we obtain

$$\sec^{2} \frac{y}{2} \cdot \frac{d}{dx} \left(\frac{y}{2} \right) = \frac{d}{dx} (x)$$
$$\Rightarrow \sec^{2} \frac{y}{2} \times \frac{1}{2} \frac{d}{dx} = 1$$
$$\Rightarrow \frac{dy}{dx} = \frac{2}{\sec^{2} \frac{y}{2}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{2}{1 + \tan^{2} \frac{y}{2}}$$
$$\therefore \frac{dy}{dx} = \frac{1}{1 + x^{2}}$$

Question 12:

Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right), 0 < x < 1$

Solution 12:

The given relationship is
$$y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$

$$y = \sin^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$
$$\Rightarrow \sin y = \frac{1-x^2}{1+x^2}$$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(\sin y) = \frac{d}{dx}\left(\frac{1-x^2}{1+x^2}\right) \qquad \dots \dots (1)$$

Chapter 5 Continuity and Differentiability

Using chain rule, we obtain $\frac{d}{dx}(\sin y) = \cos y \cdot \frac{dy}{dx}$ $\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - \left(\frac{1 - x^2}{1 + x^2}\right)^2}$ $=\sqrt{\frac{\left(1+x^{2}\right)^{2}-\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}}=\sqrt{\frac{4x^{2}}{\left(1+x^{2}\right)^{2}}}=\frac{2x}{1+x^{2}}$ $\therefore \frac{d}{dx}(\sin y) = \frac{2x}{1+x^2} \frac{dy}{dx}$(2) $\frac{d}{dx}\left(\frac{1-x^2}{1+x^2}\right) = \frac{\left(1+x^2\right)\left(1-x^2\right)^2 - \left(1-x^2\right)\left(1+x^2\right)}{\left(1+x^2\right)^2}$ [using quotient rule] $=\frac{(1+x^{2})(-2x)-(1-x^{2})(2x)}{(1+x^{2})^{2}}$ $=\frac{-2x-2x^{3}-2x+2x^{3}}{\left(1+x^{2}\right)^{2}}$ $=\frac{-4x}{\left(1+x^2\right)^2}$(3) From (1),(2), and (3), we obtain $\frac{2x}{1+x^2}\frac{dy}{dx} = \frac{-4x}{\left(1+x^2\right)^2}$ $\Rightarrow \frac{dy}{dx} = \frac{-2}{1+x^2}$ **Alternate method**

Chapter 5 Continuity and Differentiability

$$y = \sin^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$$

$$\Rightarrow \sin y = \frac{1 - x^2}{1 + x^2}$$

$$\Rightarrow (1 + x^2) \sin y = 1 - x^2$$

$$\Rightarrow (1 + \sin y) x^2 = 1 - \sin y$$

$$\Rightarrow x^2 = \frac{1 - \sin y}{1 + \sin y}$$

$$\Rightarrow x^2 = \frac{\left(\cos \frac{y}{2} - \sin \frac{y}{2}\right)^2}{\left(\cos \frac{y}{2} + \sin \frac{y}{2}\right)^2}$$

$$\Rightarrow x = \frac{\cos \frac{y}{2} - \sin \frac{y}{2}}{\cos \frac{y}{2} + \sin \frac{y}{2}}$$

$$\Rightarrow x = \frac{1 - \tan \frac{y}{2}}{1 + \tan \frac{y}{2}}$$

$$\Rightarrow x = \tan \left(\frac{\pi}{4} - \frac{\pi}{2}\right)$$

Differentiating this relation

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx} \cdot \left[\tan\left(\frac{\pi}{4} - \frac{y}{2}\right) \right]$$
$$\Rightarrow 1 = \sec^2\left(\frac{\pi}{4} - \frac{y}{2}\right) \cdot \frac{d}{dx}\left(\frac{\pi}{4} - \frac{y}{2}\right)$$
$$\Rightarrow 1 = \left[1 + \tan^2\left(\frac{\pi}{4} - \frac{y}{2}\right) \cdot \left(-\frac{1}{2} \cdot \frac{dy}{dx}\right)\right]$$
$$\Rightarrow 1 = \left(1 + x^2\right) \left(-\frac{1}{2} \frac{dy}{dx}\right)$$
$$\Rightarrow \frac{dx}{dy} = \frac{-2}{1 + x^2}$$

Ouestion 13: Find $\frac{dy}{dx}$: $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right), -1 < x < 1$ **Solution 13:** The given relationship is $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$ $y = \cos^{-1}\left(\frac{2x}{1+x^2}\right)$ $\Rightarrow \cos y = \frac{2x}{1+x^2}$ Differentiating this relationship with respect to x, we obtain $\frac{d}{dx}(\cos y) = \frac{d}{dx} \cdot \left(\frac{2x}{1+x^2}\right)$ $\Rightarrow -\sin y \cdot \frac{dy}{dx} = \frac{\left(1+x^2\right) \cdot \frac{d}{dx} \left(2x\right) - 2x \cdot \frac{d}{dx} \left(1+x^2\right)}{\left(1+x^2\right)^2}$ $\Rightarrow -\sqrt{1-\cos^2 y} \frac{dy}{dx} = \frac{(1+x^2) \times 2-2x.2x}{(1+x^2)^2}$ $\Rightarrow \left[\sqrt{1 - \left(\frac{2x}{1 + x^2}\right)^2} \right] \frac{dy}{dx} = -\left[\frac{2(1 - x)^2}{(1 + x^2)^2} \right]$ $\Rightarrow \sqrt{\frac{\left(1-x^{2}\right)^{2}-4x^{2}}{\left(1+x^{2}\right)^{2}}}\frac{dy}{dx} = \frac{-2(1-x^{2})}{(1+x^{2})}$ $\Rightarrow \sqrt{\frac{\left(1-x^{2}\right)^{2}}{\left(1+x^{2}\right)^{2}}} \frac{dy}{dx} = \frac{-2\left(1-x^{2}\right)}{\left(1-x^{2}\right)^{2}}$ $\Rightarrow \frac{1-x^2}{1+x^2} \cdot \frac{dy}{dx} = \frac{-2(1-x^2)}{(1+x^2)^2}$ $\Rightarrow \frac{dy}{dx} = \frac{-2}{1+x^2}$

we obtain

Question 14:
Find
$$\frac{dy}{dx}$$
: $y = \sin^{-1}(2x\sqrt{1-x^2}), -\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$
Solution 14:
Relationship is $y = \sin^{-1}(2x\sqrt{1-x^2})$
 $y = \sin^{-1}(2x\sqrt{1-x^2})$
 $\Rightarrow \sin y = 2x\sqrt{1-x^2}$
Differentiating this relationship with respect to x ,
 $\cos y = \frac{dy}{dx} = 2\left[x\frac{d}{dx}(\sqrt{1-x^2}) + \sqrt{1-x^2}\frac{dx}{dx}\right]$
 $\Rightarrow \sqrt{1-\sin^2 y}\frac{dy}{dx} = 2\left[\frac{x}{2} \cdot \frac{-2x}{\sqrt{1-x^2}} + \sqrt{1-x^2}\right]$
 $\Rightarrow \sqrt{1-(2x\sqrt{1-x^2})^2}\frac{dy}{dx} = 2\left[\frac{-x^2+1-x^2}{\sqrt{1-x^2}}\right]$
 $\Rightarrow \sqrt{1-4x^2(1-x^2)}\frac{dy}{dx} = 2\left[\frac{1-2x^2}{\sqrt{1-x^2}}\right]$
 $\Rightarrow \sqrt{(1-2x)^2}\frac{dy}{dx} = 2\left[\frac{1-2x^2}{\sqrt{1-x^2}}\right]$
 $\Rightarrow (1-2x^2)\frac{dy}{dx} = 2\left[\frac{1-2x^2}{\sqrt{1-x^2}}\right]$
 $\Rightarrow \frac{dy}{dx} = \frac{2}{\sqrt{1-x^2}}$

Question 15:
Find
$$\frac{dy}{dx}$$
: $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right), 0 < x < \frac{1}{\sqrt{2}}$
Solution 15:

The given relationship is $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$ $y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right)$

Chapter 5 Continuity and Differentiability

 $\Rightarrow \sec y = \frac{1}{2x^2 - 1}$ $\Rightarrow \cos y = 2x^2 - 1$ $\Rightarrow 2x^2 = 1 + \cos y$ $\Rightarrow 2x^2 = 2\cos^2 \frac{y}{2}$ $\Rightarrow x = \cos \frac{y}{2}$

Differentiating this relationship with respect to x, we obtain

$$\frac{d}{dx}(x) = \frac{d}{dx}\left(\cos\frac{y}{2}\right)$$
$$\Rightarrow 1 = \sin\frac{y}{2} \cdot \frac{d}{dx}\left(\frac{y}{2}\right)$$
$$\Rightarrow \frac{-1}{\sin\frac{y}{2}} = \frac{1}{2}\frac{dy}{dx}$$
$$\Rightarrow \frac{dy}{dx} = \frac{-2}{\sin\frac{y}{2}} = \frac{-2}{\sqrt{1 - \cos^2\frac{y}{2}}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{-2}{\sqrt{1 - x^2}}$$

Exercise 5.4

Question 1: Differentiating the following w.r.t. $x: \frac{e^x}{\sin x}$ Solution 1: Let $y = \frac{e^x}{\sin x}$ differentiating w.r.t x, we obtain

$$\frac{dy}{dx} = \frac{\sin x \frac{d}{dx} (e^x) - e^x \frac{d}{dx} (\sin x)}{\sin^2 x}$$
$$= \frac{\sin x \cdot (e^x) - e^x \cdot (\cos x)}{\sin^2 x}$$
$$= \frac{e^x (\sin x - \cos x)}{\sin^2 x}, x \neq n\pi, n \in \mathbb{Z}$$

Question 2:

Differentiating the following $e^{\sin^{-1}x}$

Solution 2:

Let $y = e^{\sin^{-1}x}$

differentiating w.r.t x , we obtain

$$\frac{dy}{dx} = \frac{d}{dx} \left(e^{\sin^{-1}x} \right)$$
$$\Rightarrow \frac{dy}{dx} = e^{\sin^{-1}x} \cdot \frac{d}{dx} \left(\sin^{-1}x \right)$$
$$\Rightarrow e^{\sin^{-1}x} \cdot \frac{1}{\sqrt{1 - x^2}}$$
$$\Rightarrow \frac{e \sin^{-1}x}{\sqrt{1 - x^2}}$$
$$\therefore \frac{dy}{dx} = \frac{e^{\sin^{-1}x}}{\sqrt{1 - x^2}}, x \in (-1, 1)$$

Question 3:

Differentiating the following w.r.t. x: e^{x^3}

Solution 3:

Let $y = e^{x^3}$ By using the quotient rule, we obtain $\frac{dy}{dx} = \frac{d}{dx} = (e^{x^3}) = e^{x^3} \cdot \frac{d}{dx}(x^3) = e^{x^3} \cdot 3x^2 = 3x^2 e^{x^3}$

Question 4:

Differentiating the following w.r.t. x: $\sin(\tan^{-1} e^{-x})$

Solution 4:

Let
$$y = \sin(\tan^{-1}e^{-x})$$

By using the chain rule, we obtain

$$\frac{dy}{dx} : \frac{d}{dx} \left[\sin\left(\tan^{-1} e^{-x}\right) \right]$$

= $\cos\left(\tan^{-1} e^{-x}\right) \cdot \frac{d}{dx} \left(\tan^{-1} e^{-x}\right)$
= $\cos\left(\tan^{-1} e^{-x}\right) \cdot \frac{1}{1 + \left(e^{-x}\right)^2} \cdot \frac{d}{dx} \left(e^{-x}\right)$
= $\frac{\cos\left(\tan^{-1} e^{-x}\right)}{1 + e^{-2x}} \cdot e^{-x} \cdot \frac{d}{dx} \left(-x\right)$
= $\frac{e^{-x} \cos\left(\tan^{-1} e^{-x}\right)}{1 + e^{-2x}} \times (-1)$
= $\frac{-e^{-x} \cos\left(\tan^{-1} e^{-x}\right)}{1 + e^{-2x}}$

Question 5:

Differentiating the following w.r.t. x: $\log(\cos e^x)$

Solution 5:

Let $y = \log(\cos e^x)$ By using the chain rule, we obtain

Chapter 5 Continuity and Differentiability

$$\frac{dy}{dx} = \frac{d}{dx} \Big[\log(\cos e^x) \Big]$$
$$= \frac{1}{\cos e^x} \cdot \frac{d}{dx} (\cos e^x)$$
$$= \frac{1}{\cos e^x} \cdot (-\sin e^x) \cdot \frac{d}{dx} (e^x)$$
$$= \frac{-\sin e^x}{\cos e^x} \cdot e^x$$
$$= -e^x \tan e^x, \ e^x \neq (2n+1)\frac{\pi}{2}, n \in \mathbf{N}$$

Question 6:

Differentiating the following w.r.t. x: $e^x + e^{x^2} + ... + e^{x^5}$

Solution 6:

$$\frac{d}{dx}\left(e^{x} + e^{x^{2}} + \dots + e^{x^{5}}\right)$$

$$= \frac{d}{dx}\left(e^{x}\right) + \frac{d}{dx}\left(e^{x^{2}}\right) + \frac{d}{dx}\left(e^{x^{3}}\right) + \frac{d}{dx}\left(e^{x^{4}}\right) + \frac{d}{dx}\left(e^{x^{5}}\right)$$

$$= e^{x} + \left[e^{x^{2}}x\frac{d}{dx}\left(x^{2}\right)\right] + \left[e^{x^{3}}x\frac{d}{dx}\left(x^{3}\right)\right] + \left[e^{x^{4}}x\frac{d}{dx}\left(x^{4}\right)\right] + \left[e^{x^{5}}x\frac{d}{dx}\left(x^{5}\right)\right]$$

$$= e^{x} + \left(e^{x^{2}}x2x\right) + \left(e^{x^{3}}x3x^{2}\right) + \left(e^{x^{4}}x4x^{3}\right) + \left(e^{x^{5}}x5x^{4}\right)$$

$$= e^{x} + 2xe^{x^{2}} + 3x^{2}e^{x^{3}} + 4x^{3}e^{x^{4}} + 5x^{4}e^{x^{5}}$$

Question 7:

Differentiating the following w.r.t. x: $\sqrt{e^{\sqrt{x}}}$, x > 0

Solution 7: Let $y = \sqrt{e^{\sqrt{x}}}$ Then, $y^2 = e^{\sqrt{x}}$ By Differentiating this relationship with respect to x, we obtain $y^2 = e^{\sqrt{x}}$ $\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{d}{dx} (\sqrt{x})$ [By applying the chain rule]

Chapter 5 Continuity and Differentiability

$$\Rightarrow 2y \frac{dy}{dx} = e^{\sqrt{x}} \frac{1}{2} \cdot \frac{1}{\sqrt{x}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4y\sqrt{x}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}\sqrt{x}}$$
$$\Rightarrow \frac{dy}{dx} = \frac{e^{\sqrt{x}}}{4\sqrt{e^{\sqrt{x}}}\sqrt{x}}, x > 0$$

Question 8:

Differentiating the following w.r.t. x: log(log x), x > 1

obtain

Solution 8:
Let
$$y = l \operatorname{og}(l \operatorname{og} x)$$

By using the chain rule, we
 $\frac{dy}{dx} = \frac{d}{dx} [l \operatorname{og}(l \operatorname{og} x)]$
 $= \frac{1}{l \operatorname{og} x} \cdot \frac{d}{dx} (l \operatorname{og} x)$
 $= \frac{1}{l \operatorname{og} x} \cdot \frac{1}{x}$
 $\frac{1}{x \operatorname{log} x}, x > 1$

Question 9:

Differentiating the following w.r.t. $x: \frac{\cos x}{\log x}, x > 0$

Solution 9:

Let $y = \frac{\cos x}{\log x}$ By using the quotient rule, we obtain

Chapter 5 Continuity and Differentiability

$$\frac{dy}{dx} = \frac{\frac{d}{dx}(\cos x) x \log x - \cos x x \frac{d}{dx}(\log x)}{(\log x)^2}$$
$$= \frac{-\sin x \log x - \cos x x \frac{1}{x}}{(\log x)^2}$$
$$= \frac{-[x \log x . \sin x + \cos x]}{x(\log x)^2}, x > 0$$

Question 10: Differentiating the following *w.r.t.* $x : \cos(\log x + e^x), x > 0$

Solution 10:
Let
$$y = \cos(\log x + e^x)$$

By using the chain rule, we obtain
 $y = \cos(\log x + e^x)$
 $\frac{dy}{dx} = -\sin[\log x + e^x] \cdot \frac{d}{dx}(\log x + e^x)$
 $= \sin(\log x + e^x) \cdot \left[\frac{d}{dx}(\log x) + \frac{d}{dx}(e^x)\right]$
 $= -\sin(\log x + e^x) \cdot \left(\frac{1}{x} + e^x\right)$
 $= \left(\frac{1}{x} + e^x\right) \sin(\log x + e^x), x > 0$

Exercise 5.5

Question 1: Differentiate the following with respect to x. $\cos x.\cos 2x.\cos 3x$

Solution 1:

Let $y = \cos x . \cos 2x . \cos 3x$ Taking logarithm or both the side, we obtain $\log y = \log(\cos x . \cos 2x . \cos 3x)$ $\Rightarrow \log y = \log(\cos x) + \log(\cos 2x) + \log(\cos 3x)$ Differentiating both sides with respect to x, we obtain $\frac{1}{y} \frac{dy}{dx} = \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) + \frac{1}{\cos 2x} \cdot \frac{d}{dx} (\cos 2x) + \frac{1}{\cos 3x} \cdot \frac{d}{dx} (\cos 3x)$ $\Rightarrow \frac{dy}{dx} = y \left[-\frac{\sin x}{\cos x} - \frac{\sin 2x}{\cos 2x} \cdot \frac{d}{dx} (2x) - \frac{\sin 3x}{\cos 3x} \cdot \frac{d}{dx} (3x) \right]$ $\therefore \frac{dy}{dx} = -\cos x . \cos 2x . \cos 3x [\tan x + 2\tan 2x + 3\tan 3x]$

Question 2:

Differentiate the function with respect to x.

$$\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Solution 2:

Let
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

Taking logarithm or both the side, we obtain

$$\log y = \log \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

$$\Rightarrow \log y = \frac{1}{2} \log \left[\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[\log\{(x-1)(x-2)\} - \log\{(x-3)(x-4)(x-5)\} \right]$$

$$\Rightarrow \log y = \frac{1}{2} \left[\log(x-1) + \log(x-2) - \log(x-3) - \log(x-4) - \log(x-5) \right]$$

Differentiating both sides with respect to , we obtain

Chapter 5 Continuity and Differentiability

$$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \begin{bmatrix} \frac{1}{x-1} \cdot \frac{d}{dx}(x-1) + \frac{1}{x-2} \cdot \frac{d}{dx}(x-2) - \frac{1}{x-3} \cdot \frac{d}{dx}(x-3) \\ -\frac{1}{x-4} \cdot \frac{d}{dx}(x-4) - \frac{1}{x-5} \cdot \frac{d}{dx}(x-5) \end{bmatrix}$$
$$\Rightarrow \frac{dy}{dx} = \frac{y}{2} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right)$$
$$\therefore \frac{dy}{dx} = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}} \left[\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} - \frac{1}{x-5} \right]$$

Question 3:

Differentiate the function with respect to x. $(\log x)^{\cos x}$

Solution 3:

Let $y = (\log x)^{\cos x}$

Taking logarithm or both the side, we obtain

 $\log y = \cos x \cdot \log(\log x)$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\cos x) x \log(\log x) + \cos x x \frac{d}{dx} [\log(\log x)]$$
$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = -\sin x \log(\log x) + \cos x x \frac{1}{\log x} \cdot \frac{d}{dx} (\log x)$$
$$\Rightarrow \frac{dy}{dx} = y \left[-\sin x \log(\log x) + \frac{\cos x}{\log x} x \frac{1}{x} \right]$$
$$\therefore \frac{dy}{dx} = (\log x)^{\cos x} \left[\frac{\cos x}{x \log x} - \sin x \log(\log x) \right]$$

Question 4:

Differentiate the function with respect to x.

 $x^{x} - 2^{\sin x}$

Solution 4:

Let $y = x^x - 2^{\sin x}$ Also, let $x^x = u$ and $2^{\sin x} = v$ $\therefore y = u - v$ $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$ $u = x^x$ Taking logarithm on both sides, we obtain $\log u = x \log x$ Differentiating both sides with respect to x, we obtain $\frac{1}{u}\frac{du}{dx} = \left[\frac{d}{dx}(x) \times \log x + x \times \frac{d}{dx}(\log x)\right]$ $\Rightarrow \frac{du}{dx} = u \left[1 \ge \log x + x \ge \frac{1}{x} \right]$ $\Rightarrow \frac{du}{dx} = x^x \left(\log x + 1\right)$ $\Rightarrow \frac{du}{dx} = x^x \left(1 + \log x\right)$ $v = 2^{\sin x}$ Taking logarithm on both the sides with respect to x, we obtain $\log v = \sin x \cdot \log 2$ Differentiating both sides with respect to x, we obtain $\frac{1}{v} \cdot \frac{dv}{dx} = \log 2 \cdot \frac{d}{dx} (\sin x)$ $\Rightarrow \frac{dv}{dv} = v \log 2 \cos x$ $\Rightarrow \frac{dv}{dx} = 2^{\sin x} \cos x \log 2$ $\therefore \frac{dy}{dx} = x^2 (1 + \log x) - 2^{\sin x} \cos x \log 2$

Question 5: Differentiate the function with respect to x. $(x+3)^2 \cdot (x+4)^3 \cdot (x+5)^4$

Solution 5: Let

Chapter 5 Continuity and Differentiability

$$y = (x+3)^{2} \cdot (x+4)^{3} \cdot (x+5)^{4}$$

Taking logarithm on both sides, we obtain.

$$\log y = \log(x+3)^{2} + \log(x+4)^{3} + \log(x+5)^{4}$$

$$\Rightarrow \log y = 2\log(x+3) + 3\log(x+4) + 4\log(x+5)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} \cdot \frac{d}{dx}(x+3) + 3 \cdot \frac{1}{x+4} \cdot \frac{d}{dx}(x+4) + 4 \cdot \frac{1}{x+5} \cdot \frac{d}{dx}(x+5)$$

$$\Rightarrow \frac{dy}{dx} = y \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^{2}(x+4)^{3}(x+5)^{4} \cdot \left[\frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)^{2}(x+4)^{3}(x+5)^{4} \cdot \left[\frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right]$$

$$\Rightarrow \frac{dy}{dx} = (x+3)(x+4)^{2}(x+5)^{3} \cdot \left[2(x^{2}+9x+20) + 3(x^{2}+9x+15) + 4(x^{2}+7x+12) \right]$$

$$\therefore \frac{dy}{dx} = (x+3)(x+4)^{2}(x+5)^{3}(9x^{2}+70x+133)$$

Question 6:

Differentiate the function with respect to x.

,

$$\left(x+\frac{1}{x}\right)^x + x^{\left(1+\frac{1}{x}\right)}$$

Solution 6:

Let
$$y = \left(x + \frac{1}{x}\right)^x + x^{\left(1 + \frac{1}{x}\right)}$$

Also, let $u = \left(x + \frac{1}{x}\right)^x$ and $v = x^{\left(1 + \frac{1}{x}\right)}$
 $\therefore y = u + v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1)
Then, $u = \left(x + \frac{1}{x}\right)^x$
Taking log on both sides

$$\Rightarrow \log u = \log\left(x + \frac{1}{x}\right)^{x}$$

$$\Rightarrow \log u = x \log\left(x + \frac{1}{x}\right)$$
Differentiating both sides with respect to x, we obtain
$$\frac{1}{u} \frac{du}{dx} = \frac{d}{dx}(x) \times \log\left(x + \frac{1}{x}\right) + x \times \frac{d}{dx} \left[\log\left(x + \frac{1}{x}\right)\right]$$

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = 1x \log\left(x + \frac{1}{x}\right) + xx \frac{1}{\left(x + \frac{1}{x}\right)}, \frac{d}{dx}\left(x + \frac{1}{x}\right)$$

$$\Rightarrow \frac{du}{dx} = u \left[\log\left(x + \frac{1}{x}\right) + \frac{x}{\left(x + \frac{1}{x}\right)}x\left(x + \frac{1}{x^{2}}\right)\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^{x} \left[\log\left(x + \frac{1}{x}\right) + \frac{\left(x - \frac{1}{x}\right)}{\left(x + \frac{1}{x}\right)}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right)^{x} \left[\log\left(x + \frac{1}{x}\right) + \frac{x^{2} - 1}{x^{2} + 1}\right]$$

$$\Rightarrow \frac{du}{dx} = \left(x + \frac{1}{x}\right) \left[\frac{x^{2} - 1}{x^{2} + 1} + \log\left(x + \frac{1}{x}\right)\right] \qquad \dots (2)$$

$$v = x^{\left(x + \frac{1}{x}\right)}$$
Taking log on both sides, we obtain
$$\log v = \log x^{\left(1 + \frac{1}{x}\right)} \log x$$
Differentiating both sides with respect to x, we obtain

Chapter 5 Continuity and Differentiability

$$\frac{1}{v} \cdot \frac{dv}{dx} = \left[\frac{d}{dx}\left(1+\frac{1}{x}\right)\right] x \log x + \left(1+\frac{1}{x}\right) \cdot \frac{d}{dx} \log x$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left(-\frac{1}{x^2}\right) \log x + \left(1+\frac{1}{x}\right) \cdot \frac{1}{x}$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = -\frac{\log x}{x^2} + \frac{1}{x} + \frac{1}{x^2}$$

$$\Rightarrow \frac{dv}{dx} = v \left[\frac{-\log x + x + 1}{x^2}\right]$$

$$\Rightarrow \frac{dv}{dx} = x^{\left(1+\frac{1}{x}\right)} \left(\frac{x+1-\log x}{x^2}\right) \qquad \dots \dots \dots (3)$$
Therefore, from (1),(2) and (3), we obtain
$$\frac{dy}{dx} = \left(x + \frac{1}{x}\right)^x \left[\frac{x^2 - 1}{x^2 + 1} + \log\left(x + \frac{1}{x}\right)\right] + x^{\left(x+\frac{1}{x}\right)} \left(\frac{x+1-\log x}{x^2}\right)$$

Question 7:

Differentiate the function with respect to x. $(\log x)^{x} + x^{\log x}$

Solution 7:

Let $y = (\log x)^{x} + x^{\log x}$ Also, let $u = (\log x)^{x}$ and $v = x^{\log x}$ $\therefore y = u + v$ $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1) $u = (\log x)^{x}$ $\Rightarrow \log u = \log[(\log x)^{x}]$ $\Rightarrow \log u = x \log(\log x)$ Differentiating both sides with respect to x, we obtain

$$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x)x\log(\log x) + x.\frac{d}{dx}[\log(\log x)]$$

$$\Rightarrow \frac{du}{dx} = u\left[1x\log(\log x) + x.\frac{1}{\log x}.\frac{d}{dx}(\log x)\right]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^{x}\left[\log(\log x) + \frac{x}{\log x}.\frac{1}{x}\right]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^{x}\left[\log(\log x) + \frac{1}{\log x}\right]$$

$$\Rightarrow \frac{du}{dx} = (\log x)^{x}\left[\frac{\log(\log x).\log x + 1}{\log x}\right]$$

$$\frac{du}{dx} = (\log x)^{x-1}\left[1 + \log x.\log(\log x)\right] \qquad \dots (2)$$

$$v = x^{\log x}$$

$$\Rightarrow \log v = \log (x^{\log x})$$

$$\Rightarrow \log v = \log x\log x = (\log x)^{2}$$
Differentiating both sides with respect to x, we obtain
$$\frac{1}{v}.\frac{dv}{dx} = 2(\log x).\frac{d}{dx}(\log x)$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x}.\frac{\log x}{x}$$

$$\Rightarrow \frac{dv}{dx} = 2x^{\log x-1}.\log x \qquad \dots (3)$$
Therefore, from (1),(2), and (3), we obtain
$$\frac{dy}{dx} = (\log x)^{x-1}[1 + \log x.\log(\log x)] + 2x^{\log x-1} \cdot \log x$$

Question 8: Differentiate the function with respect to x $(\sin x)^x + \sin^{-1}\sqrt{x}$ Solution 8:

Let $y = (\sin x)^x + \sin^{-1} \sqrt{x}$

Also, let
$$u = (\sin x)^x$$
 and $v = \sin^{-1} \sqrt{x}$
 $\therefore y = u + v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} - \frac{dv}{dx}$ (1)
 $u = (\sin x)^x$
 $\Rightarrow \log u = \log(\sin x)^x$
 $\Rightarrow \log u = x\log(\sin x)$
Differentiating both sides with respect to x, we obtain
 $\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{d}{dx} (x) x \log(\sin x) + x x \frac{d}{dx} [\log(\sin x)]$
 $\Rightarrow \frac{du}{dx} = u [1.\log(\sin x) + x. \frac{1}{\sin x} . \frac{d}{dx} (\sin x)]$
 $\Rightarrow \frac{du}{dx} = (\sin x)^x [\log(\sin x) + \frac{x}{\sin x} .\cos x]$
 $\Rightarrow \frac{du}{dx} = (\sin x)^x (x \cot x + \log \sin x)$ (2)
 $v = \sin^{-1} \sqrt{x}$
Differentiating both sides with respect to x, we obtain
 $\frac{dv}{dx} = \frac{1}{\sqrt{1 - (\sqrt{x})^2}} . \frac{d}{dx} (\sqrt{x})$
 $\Rightarrow \frac{dv}{dx} = \frac{1}{\sqrt{1 - x}} . \frac{1}{2\sqrt{x}}$
 $\Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{x - x^2}}$ (3)
Therefore, from (1), (2) and (3), we obtain
 $\frac{dy}{dx} = (\sin x)^2 (x \cot x + \log \sin x) + \frac{1}{2\sqrt{x - x^2}}$

Question 9:

Differentiate the function with respect to x.

 $x^{\sin x} + (\sin x)^{\cos x}$

Solution 9:

Let $y = x^{\sin x} + (\sin x)^{\cos x}$ Also $u = x^{\sin x}$ and $v = (\sin x)^{\cos x}$ $\therefore v = u + v$ $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$(1) $u = x^{\sin x}$ $\Rightarrow \log u = \log(x^{\sin x})$ $\Rightarrow \log u = \sin x \log x$ Differentiating both sides with respect to x, we obtain $\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(\sin x) \cdot \log x + \sin x \cdot \frac{d}{dx}(\log x)$ $\Rightarrow \frac{du}{dx} = u = \left[\cos x \log x + \sin x \cdot \frac{1}{x}\right]$ $\Rightarrow \frac{du}{dx} = x^{\sin x} \left[\cos x \log x + \frac{\sin x}{x} \right]$(2) $v = (\sin x)^{\cos x}$ $\Rightarrow \log v = \log(\sin x)^{\cos x}$ $\Rightarrow \log v = cox \log(\sin x)$ Differentiating both sides with respect to x, we obtain $\frac{1}{v}\frac{dv}{dx} = \frac{d}{dx}(\cos x)\operatorname{xlog}(\sin x) + \cos xx\frac{d}{dx}\left[\log(\sin x)\right]$ $\Rightarrow \frac{dv}{dx} = v \left[-\sin x \cdot \log(\sin x) + \cos x \cdot \frac{1}{\sin x} \cdot \frac{d}{dx} (\sin x) \right]$ $\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[-\sin x \log \sin x + \frac{\cos x}{\sin x} \cos x \right]$ $\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[-\sin x \log \sin x + \cot x \cos x \right]$ $\Rightarrow \frac{dv}{dx} = (\sin x)^{\cos x} \left[\cot x \cos x - \sin x \log \sin x \right]$(3) Therefore, from (1), (2) and (3), we obtain $\frac{dy}{dx} = x^{\sin x} \left(\cos x \log x + \frac{\sin x}{x} \right) + \left(\sin x \right)^{\cos x} \left[\cos x \cot x - \sin x \log \sin x \right]$
....(2)

Question 10:
Differentiate the function with respect to x .
$x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$
Solution 10:
Let $y = x^{x\cos x} + \frac{x^2 + 1}{x^2 - 1}$
Also, let $u = x^{x\cos x}$ and $v = \frac{x^2 + 1}{x^2 - 1}$
$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$
$\cdots y - u + v$
$u = x^{1 \cos x}$
Differentiating both sides with respect to x , we obtain
$\frac{1}{u}\frac{du}{dx} = \frac{d}{dx}(x).\cos x \log x + x.\frac{d}{dx}(\cos x).\log x + x\cos x.\frac{d}{dx}(\log x)$
$\Rightarrow \frac{du}{dx} = u \left[1.\cos x \cdot \log x + x \cdot (-\sin x) \log x + x \cos x \cdot \frac{1}{x} \right]$
$\Rightarrow \frac{du}{dx} = x^{x\cos x} \left(\cos x \log x - x\sin x \log x + \cos x \right)$
$\Rightarrow \frac{du}{dx} = x^{x\cos x} \Big[\cos x \big(1 + \log x \big) - x \sin x \log x \Big]$
$v = \frac{x^2 + 1}{x^2 - 1}$
$\Rightarrow \log v = \log(x^2 + 1) - \log(x^2 - 1)$
Differentiating both sides with respect to x , we obtain
1 dv 2x 2x
$\frac{1}{v} - \frac{1}{dx} - \frac{1}{x^2 + 1} - \frac{1}{x^2 - 1}$
$\Rightarrow \frac{dv}{dx} = v \left[\frac{2x(x^2 - 1) - 2x(x^2 + 1)}{(x^2 + 1)(x^2 - 1)} \right]$
$\Rightarrow \frac{dv}{dx} = \frac{x^2 + 1}{x^2 - 1} x \left[\frac{-4x}{\left(x^2 + 1\right)\left(x^2 - 1\right)} \right]$
$\Rightarrow \frac{dv}{dx} = \frac{-4x}{\left(x^2 - 1\right)^2} \qquad \dots \dots (3)$
Therefore, from (1), (2) and (3), we obtain

Chapter 5 Continuity and Differentiability

$$\frac{dy}{dx} = x^{x\cos x} \left[\cos x \left(1 + \log x \right) - x \sin x \log x \right] - \frac{4x}{\left(x^2 - 1 \right)^2}$$

Question 11:

Differentiate the function with respect to x.

$$(x \cos x)^{x} + (x \sin x)^{\frac{1}{x}}$$
Solution 11:
Let $y = (x \cos x)^{x} + (x \sin x)^{\frac{1}{x}}$
Also, let $u = (x \cos x)^{x}$ and $v = (x \sin x)^{\frac{1}{x}}$
 $\therefore y = u + v$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1)
 $u = (x \cos x)^{2}$
 $\Rightarrow \log u = \log(x \cos x)^{x}$
 $\Rightarrow \log u = x \log(x \cos x)$
 $\Rightarrow \log u = x \log(x \cos x)$
 $\Rightarrow \log u = x \log(x \cos x)$
 $\Rightarrow \log u = x \log x + x \log \cos x$
Differentiating both sides with respect to x, we obtain
 $\frac{1}{u} \frac{du}{dx} = \frac{d}{dx} (x + \log x) + \frac{d}{dx} (x \log \cos x)$
 $\Rightarrow \frac{du}{dx} = u \Big[\Big\{ \log x \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log x) \Big\} + \Big\{ \log \cos x \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log x) \Big\} \Big]$
 $\Rightarrow \frac{du}{dx} = (x \cos x)^{x} \Big[\Big(\log x \cdot 1 + x \cdot \frac{1}{x} \Big) + \Big\{ \log \cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) \Big\} \Big]$
 $\Rightarrow \frac{du}{dx} = (x \cos x)^{x} \Big[\Big(\log x \cdot 1 + x \cdot \frac{1}{x} \Big) + \Big\{ \log \cos x \cdot 1 + x \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) \Big\} \Big]$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^{x} \left[(1+\log x) + (\log\cos x - x\tan x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^{x} \left[1 - x\tan x + (\log x + \log\cos x) \right]$$

$$\Rightarrow \frac{du}{dx} = (x\cos x)^{x} \left[1 - x\tan x + \log(x\cos x) \right] \qquad \dots \dots (2)$$

$$v = (x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log (x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \log (x\sin x)^{\frac{1}{x}}$$

$$\Rightarrow \log v = \frac{1}{x} \log (x\sin x)$$

$$\Rightarrow \log v = \frac{1}{x} \log (x + \log\sin x)$$

$$\Rightarrow \log v = \frac{1}{x} \log x + \frac{1}{x} \log \sin x$$
Differentiating both sides with respect to x, we obtain
$$\frac{1}{y} \frac{dv}{dx} = \frac{d}{dx} \left(\frac{1}{x} \log x \right) + \frac{d}{dx} \left[\frac{1}{x} \log(\sin x) \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[\log x. \frac{d}{dx} \left(\frac{1}{x} \right) + \frac{1}{x}. \frac{d}{dx} (\log x) \right] + \left[\log(\sin x). \frac{d}{dx} \left(\frac{1}{x} \right) + \frac{1}{x}. \frac{d}{dx} \{\log(\sin x)\} \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[\log x. \frac{d}{dx} \left(\frac{1}{x} \right) + \frac{1}{x}. \frac{1}{x} \right] + \left[\log(\sin x). \left(-\frac{1}{x^{2}} \right) + \frac{1}{x}. \frac{1}{\sin x}. \frac{d}{dx} (\sin x) \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[\log x. \left(-\frac{1}{x^{2}} \right) + \frac{1}{x}. \frac{1}{x} \right] + \left[\log(\sin x). \left(-\frac{1}{x^{2}} \right) + \frac{1}{x}. \frac{1}{\sin x}. \frac{d}{dx} (\sin x) \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[\log x. \left(-\frac{1}{x^{2}} \right) + \frac{1}{x}. \frac{1}{x} \right] + \left[\log(\sin x) + \frac{1}{x} + \frac{1}{\sin x}. \cos x \right]$$

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = \left[x\sin x \right]^{\frac{1}{v}} \left[\frac{1 - \log x - \log(\sin x) + x \cot x}{x^{2}} \right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{v}} \left[\frac{1 - \log(x\sin x) + x \cot x}{x^{2}} \right]$$

$$\Rightarrow \frac{dv}{dx} = (x\sin x)^{\frac{1}{v}} \left[\frac{1 - \log(x\sin x) + x \cot x}{x^{2}} \right]$$

$$= \frac{dv}{dx} = (x\cos x)^{2} \left[1 - x\tan x + \log(x\cos x) \right] + (x\sin x)^{\frac{1}{v}} \left[\frac{x \cot x + 1 - \log(x\sin x)}{x^{2}} \right]$$

Ouestion 12: Find $\frac{dy}{dx}$ of function. $x^{y} + y^{x} = 1$ Solution 12: The given function is $x^{y} + y^{x} = 1$ Let $x^y = u$ and $y^x = v$ Then, the function becomes u + v = 1 $\therefore \frac{du}{dx} + \frac{dv}{dx} = 0$(1) $u = x^y$ $\Rightarrow \log u = \log(x^y)$ $\Rightarrow \log u = y \log x$ Differentiating both sides with respect to x, we obtain $\frac{1}{u}\frac{du}{dx} = \log x\frac{dy}{dx} + y.\frac{d}{dx}(\log x)$ $\Rightarrow \frac{du}{dx} = u \left[\log x \frac{dy}{dx} + y \cdot \frac{1}{x} \right]$ $\Rightarrow \frac{du}{dx} = x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right)$(2) $v = y^x$ $\Rightarrow \log v = \log(v^x)$ $\Rightarrow \log v = x \log y$ Differentiating both sides with respect to x, we obtain $\frac{1}{v} \cdot \frac{dv}{dx} = \log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y)$ $\Rightarrow \frac{dv}{dx} = v \left(\log y \cdot 1 + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} \right)$ $\Rightarrow \frac{dv}{dx} = y^{x} \left(\log y + \frac{x}{y} \frac{dy}{dx} \right)$(3) Therefore, from (1), (2) and (3), we obtain

$$x^{y} \left(\log x \frac{dy}{dx} + \frac{y}{x} \right) + y^{x} \left(\log y + \frac{x}{y} \frac{dy}{dx} \right) = 0$$

$$\Rightarrow \left(x^{2} + \log x + xy^{y-1} \right) \frac{dy}{dx} = -\left(yx^{y-1} + y^{x} \log y \right)$$

$$\therefore \frac{dy}{dx} = -\frac{yx^{y-1} + y^{x} \log y}{x^{y} \log x + xy^{x-1}}$$

Question 13: Find $\frac{dy}{dx}$ of function $y^x = x^y$

Solution 13:

The given function is $y^x = x^y$

Taking logarithm on both sides, we obtain.

$$x \log y = y \log x$$

Differentiating both sides with respect to x, we obtain

$$\log y \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log y) = \log x \cdot \frac{d}{dx}(y) + y \cdot \frac{d}{dx}(\log x)$$

$$\Rightarrow \log y \cdot 1 + x \cdot \frac{1}{y} \cdot \frac{dy}{dx} = \log x \cdot \frac{dy}{dx} + y \cdot \frac{1}{x}$$

$$\Rightarrow \log y + \frac{x}{y} \frac{dy}{dx} = \log x \frac{dy}{dx} + \frac{y}{x}$$

$$\Rightarrow \left(\frac{x}{y} - \log x\right) \frac{dy}{dx} = \frac{y}{x} - \log y$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

$$\Rightarrow \left(\frac{x - y \log x}{y}\right) \frac{dy}{dx} = \frac{y - x \log y}{x}$$

Question 14: Find $\frac{dy}{dx}$ of function $(\cos x)^y = (\cos y)^x$

Solution 14:

The given function is $(\cos x)^y = (\cos y)^x$

Taking logarithm on both sides, we obtain.

 $y = \log \cos x = x \log \cos y$

Differentiating both sides with respect to x, we obtain

$$\log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{d}{dx} (\log \cos x) = \log \cos y \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} (\log \cos y)$$

$$\Rightarrow \log \cos x \cdot \frac{dy}{dx} + y \cdot \frac{1}{\cos x} \cdot \frac{d}{dx} (\cos x) = \log \cos y \cdot 1 + x \cdot \frac{1}{\cos y} \cdot \frac{d}{dx} (\cos y)$$

$$\Rightarrow \log \cos x \frac{dy}{dx} + \frac{y}{\cos x} \cdot (-\sin x) = \log \cos y + \frac{x}{\cos y} (-\sin y) \cdot \frac{dy}{dx}$$

$$\Rightarrow \log \cos x \frac{dy}{dx} - y \tan x = \log \cos y - x \tan y \frac{dy}{dx}$$

$$\Rightarrow (\log \cos x + x \tan y) \frac{dy}{dx} = y \tan x + \log \cos y$$

$$\therefore \frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$$

Question 15: Find $\frac{dy}{dx}$ of function $xy = e^{(x-y)}$

Solution 15:

The given function is $xy = e^{(x-y)}$ Taking logarithm on both sides, we obtain. $\log(xy) = \log(e^{x-y})$ $\Rightarrow \log x + \log y = (x-y)\log e$ $\Rightarrow \log x + \log y = (x-y) \times 1$ $\Rightarrow \log x + \log y = x - y$ Differentiating both sides with respect to x, we obtain

Chapter 5 Continuity and Differentiability

$$\frac{d}{dx}(\log x) + \frac{d}{dx}(\log y) = \frac{d}{dx}(x) - \frac{dy}{dx}$$
$$\Rightarrow \frac{1}{x} + \frac{1}{y}\frac{dy}{dx} = 1 - \frac{1}{x}$$
$$\Rightarrow \left(1 + \frac{1}{y}\right)\frac{dy}{dx} = \frac{x - 1}{x}$$
$$\therefore \frac{dy}{dx} = \frac{y(x - 1)}{x(y + 1)}$$

Question 16:

Find the derivative of the function given by $f(x) = (1-x)(1+x^2)(1+x^4)(1+x^8)$ and hence find f'(1)

Solution 16:

The given relationship is
$$f(x) = (1-x)(1+x^2)(1+x^4)(1+x^8)$$

Taking logarithm on both sides, we obtain.
 $\log f(x) = \log(1+x) + \log(1+x^2) + \log(1+x^4) + \log(1+x^8)$
Differentiating both sides with respect to x , we obtain
 $\frac{1}{f(x)} \cdot \frac{d}{dx} [f(x)] = \frac{d}{dx} \log(1+x) + \frac{d}{dx} \log(1+x^2) + \frac{d}{dx} \log(1+x^4) + \frac{d}{dx} \log(1+x^8)$
 $\Rightarrow \frac{1}{f(x)} \cdot f'(x) = \frac{1}{1+x} \cdot \frac{d}{dx} (1+x) + \frac{1}{1+x^2} \cdot \frac{d}{dx} (1+x^2) + \frac{1}{1+x^4} \cdot \frac{d}{dx} (1+x^4) + \frac{1}{1+x^8} \cdot \frac{d}{dx} (1+x^8)$
 $\Rightarrow f'(x) = f(x) [\frac{1}{1+x} + \frac{1}{1+x^2} \cdot 2x + \frac{1}{1+x^4} \cdot 4x^3 + \frac{1}{1+x^8} \cdot 8x^7]$
 $\therefore f'(x) = (1+x)(1+x^2)(1+x^4)(1+x^8) [\frac{1}{1+x} + \frac{2x}{1+x^2} + \frac{4x^3}{1+x^4} + \frac{8x^7}{1+x^8}]$
Hence, $f'(1) = (1+1)(1+1^2)(1+1^4)(1+1^8) [\frac{1}{1+1} + \frac{2x1}{1+1^2} + \frac{4x1^3}{1+1^4} + \frac{8x1^7}{1+1^8}]$

Chapter 5 Continuity and Differentiability

$$= 2x 2x 2x 2 \left[\frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \right]$$
$$= 16x \left(\frac{1 + 2 + 4 + 8}{2} \right)$$
$$= 16x \frac{15}{2} = 120$$

Question 17:

Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in three ways mentioned below

i. By using product rule.

ii. By expanding the product to obtain a single polynomial

iii. By logarithm Differentiate

Do they all given the same answer?

Solution 17:
Let
$$y = (x^2 - 5x + 8)(x^3 + 7x + 9)$$

(i) Let $x = x^2 - 5x + 8$ and $u = x^3 + 7x + 9$
 $\therefore y = uv$
 $\Rightarrow \frac{dy}{dx} = \frac{du}{dv}v + u.\frac{dv}{dx}$ (By using product rule)
 $\Rightarrow \frac{dy}{dx} = \frac{d}{dx}(x^2 - 5x + 8).(x^3 + 7x + 9) + (x^2 - 5x + 8).\frac{d}{dx}(x^3 + 7x + 9)$
 $\Rightarrow \frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$
 $\Rightarrow \frac{dy}{dx} = 2x(x^3 + 7x + 9) - 5(x^3 + 7x + 9) + x^2(3x^2 + 7) - 5x(3x^2 + 7) - 8(3x^2 + 7)$
 $\Rightarrow \frac{dy}{dx} = (2x^4 + 14x^2 + 18x) - 5x^3 - 35x - 45 + (3x^4 + 7x^2) - 15x^3 - 35x + 24x^2 + 56$
 $\therefore \frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 52x + 11$
(ii)

$$y = (x^{2} - 5x + 8)(x^{3} + 7x + 9)$$

$$= x^{2}(x^{3} + 7x + 9) - 5x(x^{3} + 7x + 9) + 8(x^{3} + 7x + 9)$$

$$= x^{5} + 7x^{3} + 9x^{2} - 5x^{4} - 35x^{2} - 45x + 8x^{3} + 56x + 72$$

$$= x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx}(x^{5} - 5x^{4} + 15x^{3} - 26x^{2} + 11x + 72)$$

$$= \frac{d}{dx}(x^{5}) - 5\frac{d}{dx}(x^{4}) + 15\frac{d}{dx}(x^{3}) - 26\frac{d}{dx}(x^{2}) + 11\frac{d}{dx}(x) + \frac{d}{dx}(72)$$

$$= 5x^{4} - 5x + 4x^{3} + 15x + 3x^{2} - 26x + 2x + 11x + 10$$

$$= 5x^{4} - 20x^{3} + 45x^{2} - 52x + 11$$
(iii) Taking logarithm on both sides, we obtain.

$$\log y = \log(x^{2} - 5x + 8) + \log(x^{3} + 7x + 9)$$
Differentiating both sides with respect to x , we obtain

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\log(x^{2} - 5x + 8) + \frac{d}{dx}\log(x^{3} + 7x + 9)$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = x\left[\frac{1}{x^{2} - 5x + 8} \cdot \frac{d}{dx}(x^{2} - 5x + 8) + \frac{1}{x^{3} + 7x + 9} \cdot (3x^{2} + 7)\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^{2} - 5x + 8)(x^{3} + 7x + 9)\left[\frac{2x - 5}{x^{3} - 5x + 8} + \frac{3x^{2} + 7}{x^{3} + 7x + 9}\right]$$

$$\Rightarrow \frac{dy}{dx} = (x^{2} - 5x + 8)(x^{3} + 7x + 9)\left[\frac{(2x - 5)(x^{3} + 7x + 9) + (3x^{2} + 7)(x^{2} - 5x + 8)}{(x^{2} - 5x + 8) + (x^{3} + 7x + 9)}\right]$$

$$\Rightarrow \frac{dy}{dx} = 2x(x^{3} + 7x + 9) - 5(x^{3} + 7x + 9) + 3x^{2}(x^{2} - 5x + 8) + 7(x^{2} - 5x + 8)$$

$$\Rightarrow \frac{dy}{dx} = (2x^{4} + 14x^{2} + 18x) - 5x^{3} - 35x - 45 + (3x^{4} - 15x^{3} + 24x^{2}) + (7x^{2} - 35x + 56)$$

$$\Rightarrow \frac{dy}{dx} = 5x^{2} - 20x^{3} + 45x^{2} - 52x + 11$$
From the above three observations, it can be concluded that all the result of $\frac{dy}{dx}$ are same.

Question 18:

If u, v and w are functions of x, then show that $\frac{d}{dx}(u.v.w) = \frac{du}{dx}v.w + u\frac{dv}{dx}.w + u.v\frac{dw}{dx}$ In two ways-first by repeated application of product rule, second by logarithmic differentiation.

Solution 18:

Let y = u.v.w = u.(v.w)

By applying product rule, we obtain

$$\frac{dy}{dx} = \frac{du}{dx} \cdot (v \cdot w) + u \cdot \frac{d}{dx} (v \cdot w)$$
$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \left[\frac{dv}{dx} \cdot w + v \cdot \frac{dv}{dx} \right]$$
$$\Rightarrow \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \frac{dw}{dx}$$

(Again applying product rule)

By taking logarithm on both sides of the equation y = u.v.w, we obtain

$$\log y = \log u + \log v + \log w$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{d}{dx} (\log u) + \frac{d}{dx} (\log v) + \frac{d}{dx} (\log w)$$
$$\Rightarrow \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx}$$
$$\Rightarrow \frac{dy}{dx} = y \left(\frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$
$$\Rightarrow \frac{dy}{dx} = u \cdot v \cdot w \left(\frac{1}{u} \frac{du}{dx} + \frac{1}{v} \frac{dv}{dx} + \frac{1}{w} \frac{dw}{dx} \right)$$
$$\therefore \frac{dy}{dx} = \frac{du}{dx} \cdot v \cdot w + u \cdot \frac{dv}{dx} \cdot w + u \cdot v \cdot \frac{dw}{dx}$$

Exercise 5.6

Question 1: If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$ $x = 2at^2$, $y = at^4$

Solution 1:

The given equations are $x = 2at^2$ and $y = at^4$

Then,

$$\frac{dx}{dt} = \frac{d}{dt}(2at^2) = 2a \cdot \frac{d}{dt}(t^2) = 2a \cdot 2t = 4at$$
$$\frac{dy}{dx} = \frac{d}{dt}(at^4)a \cdot \frac{d}{dt}(t^4) = a \cdot 4 \cdot t^3 = 4at^3$$
$$\therefore \frac{dy}{dt} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{4at^3}{4at} = t^2$$

Question 2:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

 $x = a\cos\theta, y = b\cos\theta$

Solution 2:

The given equations are $x = a\cos\theta$ and $y = b\cos\theta$

Then,
$$\frac{dx}{d\theta} = \frac{d}{d\theta} (a\cos\theta) = a(-\sin\theta) = -a\sin\theta$$

 $\frac{dy}{d\theta} = \frac{d}{d\theta} (b\cos\theta) = b(-\sin\theta) = -b\sin\theta$
 $\therefore \frac{dy}{dx} \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{-b\sin\theta}{-a\sin\theta} = \frac{b}{a}$

Question 3:

If x and y are connected parametrically by the equation, without eliminating the parameter, find dy

 $\frac{dy}{dx}$

 $x = \sin t, y = \cos 2t$

Solution 3:

The given equations are $x = \sin t$ and $y = \cos 2t$

Then,
$$\frac{dx}{dt} = \frac{d}{dt}(\sin t) = \cos t$$

 $\frac{dy}{dt} = \frac{d}{dt}(\cos 2t) = -\sin 2t \cdot \frac{d}{dt}(2t) = -2\sin 2t$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dx}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-2\sin 2t}{\cos t} = \frac{-2 \cdot 2\sin t \cos t}{\cos t} = -4\sin t$

Question 4:

If x and y are connected parametrically by the equation, without eliminating the parameter, find dy

 \overline{dx}

$$x = 4t, y = \frac{4}{t}$$

Solution 4:

The equations are x = 4t and $y = \frac{4}{t}$

$$\frac{dx}{dt} = \frac{d}{dt}(4t) = 4$$
$$\frac{dy}{dt} = \frac{d}{dt}\left(\frac{4}{t}\right) = 4 \cdot \frac{d}{dt}\left(\frac{1}{t}\right) = 4 \cdot \left(\frac{-1}{t^2}\right) = \frac{-4}{t^2}$$
$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-4}{t^2}\right)}{4} = \frac{-1}{t^2}$$

Chapter 5 Continuity and Differentiability

Question 5:

If x and y are connected parametrically by the equation, without eliminating the parameter, find dy

 $\frac{dx}{dx} = \cos\theta - \cos 2\theta, \ y = \sin\theta - \sin 2\theta$

Solution 5:

The given equations are $x = \cos \theta - \cos 2\theta$ and $y = \sin \theta - \sin 2\theta$

Then,
$$\frac{dx}{d\theta} = \frac{d}{d\theta}(\cos\theta - \cos 2\theta) = \frac{d}{d\theta}(\cos\theta) - \frac{d}{d\theta}(\cos 2\theta)$$

 $= -\sin\theta(-2\sin2\theta) = 2\sin2\theta - \sin\theta$
 $\frac{dy}{d\theta} = \frac{d}{d\theta}(\sin\theta - \sin 2\theta) = \frac{d}{d\theta}(\sin\theta) - \frac{d}{d\theta}(\sin 2\theta)$
 $= \cos\theta - 2\cos\theta$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{\cos\theta - 2\cos\theta}{2\sin 2\theta - \sin\theta}$

Question 6:

If x and y are connected parametrically by the equation, without eliminating the parameter, find dy

 \overline{dx}

$$x = a(\theta - \sin \theta), y = a(1 + \cos \theta)$$

Solution 6: The given equations are $x = a(\theta - \sin \theta)$ and $y = a(1 + \cos \theta)$

Then,
$$\frac{dx}{d\theta} = a \left[\frac{d}{d\theta}(\theta) - \frac{d}{d\theta}(\sin\theta) \right] = a(1 - \cos\theta)$$

Class XII - NCERT - Maths

Chapter 5 Continuity and Differentiability

$$\frac{dy}{d\theta} = a \left[\frac{d}{d\theta} (1) + \frac{d}{d\theta} (\cos \theta) \right] = a [0 + (-\sin \theta)] = -a \sin \theta$$
$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{-a \sin \theta}{a(1 - \cos \theta)} = \frac{-2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}}{2 \sin^2 \frac{\theta}{2}} = \frac{-\cos \frac{\theta}{2}}{\sin \frac{\theta}{2}} = -\cot \frac{\theta}{2}$$

Question 7:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dx}$

$$x = \frac{\sin^3 t}{\sqrt{\cos x^2 t}}, \ y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$$

Solution 7:

The given equations are
$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$$
 and $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$
Then, $\frac{dx}{dt} = \frac{d}{dt} \left[\frac{\sin^3 t}{\sqrt{\cos 2t}} \right]$

$$= \frac{\sqrt{\cos 2t} - \frac{d}{dt} (\sin^3 t) - \sin^3 t \cdot \frac{d}{dt} \sqrt{\cos 2t}}{\cos 2t}$$

$$= \frac{\sqrt{\cos 2t} \cdot 3\sin^2 t \cdot \frac{d}{dt} (\sin t) - \sin^3 t x \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt} (\cos 2t)}{\cos 2t}$$

$$= \frac{3\sqrt{\cos 2t} \cdot \sin^2 t \cos t - \frac{\sin^3 t}{2\sqrt{\cos 2t}} \cdot (-2\sin 2t)}{\cos 2t \sqrt{\cos 2t}}$$

$$= \frac{3\cos 2t \sin^2 t \cot t + \sin^2 t \sin 2t}{\cos 2t \sqrt{\cos 2t}}$$

$$= \frac{\frac{d}{dt} \left[\frac{\cos^3 t}{\sqrt{\cos 2t}} \right]$$

Chapter 5 Continuity and Differentiability

$-\frac{\sqrt{\cos 2t} \cdot \frac{d}{dt}(\cos^3 t) - \cos^3 t \cdot \frac{d}{dt}(\sqrt{\cos 2t})}{dt}$
$-\cos 2t$
$= \frac{\sqrt{\cos 2t} 3\cos^2 t \cdot \frac{d}{dt}(\cos t) - \cos^3 t \cdot \frac{1}{2\sqrt{\cos 2t}} \cdot \frac{d}{dt}(\cos 2t)}{1}$
$\cos 2t$
$=\frac{3\sqrt{\cos 2t}\cos^2 t(-\sin t)-\cos^3 t}{\sqrt{\cos 2t}}\cdot(-2\sin 2t)$
$\cos 2t$
$-3\cos 2t \cdot \cos^2 t \cdot \sin t + \cos^3 t \sin 2t$
$-\frac{1}{\cos 2t \cdot \sqrt{\cos 2t}}$
$\therefore \frac{dy}{dx} \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{-3\cos 2t \cdot \cos^2 t + \cos^3 t \sin 2t}{3\cos 2t \sin^2 t \cos t + \sin^3 t \sin 2t}$
$=\frac{3\cos 2t \cdot \cos^2 t \sin t + \cos^3 t (2\sin t \cos t)}{2}$
$3\cos 2t\sin^2 \cdot \cos t + \sin^3 t (2\sin t\cos t)$
$=\frac{\sin t \cos t [-3\cos 2t \cdot \cos t + 2\cos^3 t]}{1-3\cos^2 t \cdot \cos^2 t}$
$\sin t \cos t [3\cos 2t \sin t + 2\sin^3 t]$
$= \frac{\left[-3(2\cos^2 t - 1)\cos t + 2\cos^3 t\right]}{\left[\cos 2t = (2\cos^2 t - 1)\right]}$
$\begin{bmatrix} 3(1-2\sin^2 t)\sin t + 2\sin^3 t \end{bmatrix} \qquad \begin{bmatrix} \cos 2t = (1-2\sin^2 t) \end{bmatrix}$
$-4\cos^3 t + 3\cos t \qquad \left[\cos 3t = 4\cos^3 t - 3\cos t\right]$
$3\sin t - 4\sin^3 t \qquad $
$=\frac{-\cos 3t}{\sin 3t}$ $=-\cot 3t$

Question 8:

If x and y are connected parametrically by the equation, without eliminating the parameter, find dy

$$\frac{dy}{dx}$$
$$x = a\left(\cos t + \log \tan \frac{t}{2}\right), \ y = a\sin t$$

Solution 8:

Chapter 5 Continuity and Differentiability

The given equations are
$$x = a\left(\cos t + \log \tan \frac{t}{2}\right)$$
 and $y = a\sin t$
Then, $\frac{dx}{dt} = a \cdot \left[\frac{d}{dt}(\cos t) + \frac{d}{dt}\left(\log \tan \frac{t}{2}\right)\right]$
 $= a\left[-\sin t + \frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{dt}\left(\tan \frac{t}{2}\right)\right]$
 $= a\left[-\sin t + \cot \frac{t}{2} \cdot \sec^2 \frac{t}{2} \cdot \frac{d}{dt}\left(\frac{t}{2}\right)\right]$
 $= a\left[-\sin t + \cot \frac{t}{2} \cdot \sec^2 \frac{t}{2} \cdot \frac{d}{dt}\left(\frac{t}{2}\right)\right]$
 $= a\left[-\sin t + \frac{\cos \frac{t}{2}}{\sin \frac{t}{2}} \times \frac{1}{\cos^2 \frac{t}{2}} \times \frac{1}{2}\right]$
 $= a\left[-\sin t + \frac{1}{2\sin \frac{t}{2}\cos \frac{t}{2}}\right]$
 $= a\left(-\sin t + \frac{1}{\sin t}\right)$
 $= a\left(\frac{-\sin^2 t + 1}{\sin t}\right)$
 $= a\frac{\cos^2 t}{\sin t}$
 $\frac{dy}{dt} = a\frac{d}{dt}(\sin t) = a\cos t$
 $\therefore \frac{dy}{dx} = \left(\frac{\frac{dy}{dt}}{\frac{dx}{dt}}\right) = \frac{a\cos t}{\left(a\frac{\cos^2 t}{\sin t}\right)} = \frac{\sin t}{\cos t} = \tan t$

Question 9:

If x and y are connected parametrically by the equation, without eliminating the parameter, find $\frac{dy}{dy}$

 $\frac{dy}{dx}$

 $x = a \sec, y = b \tan \theta$

Solution 9:
The given equations are
$$x = a \sec a$$
 and $y = b \tan \theta$
Then, $\frac{dx}{d\theta} = a \cdot \frac{d}{d\theta} (\sec \theta) = a \sec \theta \tan \theta$
 $\frac{dy}{d\theta} = b \cdot \frac{d}{d\theta} (\tan \theta) = b \sec^2 \theta$
 $\frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta}\right)}{\left(\frac{dx}{d\theta}\right)} = \frac{b \sec^2 \theta}{a \sec \theta \tan \theta} = \frac{b}{a} \sec \theta \cot \theta = \frac{b \cos \theta}{a \cos \theta \sin \theta} = \frac{b}{a} \times \frac{1}{\sin \theta} = \frac{b}{a} \csc \theta$

Question 10:

If x and y are connected parametrically by the equation, without eliminating the parameter, find dy

 $\frac{d}{dx}$

 $x = a(\cos\theta + \theta\sin\theta), y = a(\sin\theta - \theta\cos\theta)$

Solution 10: The given equations are $x = a(\cos\theta + \theta\sin\theta)$ and $y = a(\sin\theta - \theta\cos\theta)$ Then, $\frac{dx}{d\theta} = a \left[\frac{d}{d\theta} \cos\theta + \frac{d}{d\theta} (\theta\sin\theta) \right] = a \left[-\sin\theta + \theta \frac{d}{d\theta} (\sin\theta) + \sin\theta \frac{d}{d\theta} (\theta) \right]$ $= a [-\sin\theta + \theta\cos\theta + \sin\theta] = a\theta\cos\theta$ $\frac{dx}{d\theta} = a \left[\frac{d}{d\theta} (\sin\theta) - \frac{d}{d\theta} (\theta\cos\theta) \right] = a \left[\cos\theta - \left\{ \theta \frac{d}{d\theta} (\cos\theta) + \cos\theta \cdot \frac{d}{d\theta} (\theta) \right\} \right]$ $= a [\cos\theta + \theta\sin\theta - \cos\theta]$ $= a \theta\sin\theta$ $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{d\theta} \right)}{\left(\frac{dx}{d\theta} \right)} = \frac{a \theta\sin\theta}{a \theta\sin\theta} = \tan\theta$

Chapter 5 Continuity and Differentiability

Question 11:
If
$$x = \sqrt{a^{\sin^{-1}t}}$$
, $y = \sqrt{a^{\cos^{-1}t}}$, show that $\frac{dy}{dx} = -\frac{y}{x}$
Solution 11:
The given equations are $x = \sqrt{a^{\sin^{-1}t}}$ and $y = \sqrt{a^{\cos^{-1}t}}$
 $x = \sqrt{a^{\sin^{-1}t}}$ and $y = \sqrt{a^{\cos^{-1}t}}$
 $\Rightarrow x = (a^{\sin^{-1}t})$ and $y = (a^{\cos^{-1}t})^{\frac{1}{2}}$
 $\Rightarrow x = a^{\frac{1}{2}\sin^{-1}t}$ and $y = a^{\frac{1}{2}\cos^{-1}t}$
Consider $x = a^{\frac{1}{2}\sin^{-1}t}$
Taking logarithm on both sides, we obtain.
 $\log x = \frac{1}{2}\sin^{-1}t\log a$
 $\therefore \frac{1}{x} \cdot \frac{dx}{dt} = \frac{1}{2}\log a \cdot \frac{d}{dt}(\sin^{-1}t)$
 $\Rightarrow \frac{dx}{dt} = \frac{x}{2}\log a \cdot \frac{1}{\sqrt{1-t^2}}$
Then, consider
 $y = a^{\frac{1}{2}\cos^{-1}t}$

Taking logarithm on both sides, we obtain.

$$\log y = \frac{1}{2} \cos^{-1} t \log a$$

Chapter 5 Continuity and Differentiability

$$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2} \log a \cdot \frac{d}{dt} (\cos^{-1} t)$$
$$\Rightarrow \frac{dy}{dt} = \frac{y \log a}{2} \cdot \left(\frac{-1}{\sqrt{1 - t^2}}\right)$$
$$\Rightarrow \frac{dy}{dt} = \frac{-y \log a}{2\sqrt{1 - t^2}}$$
$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{\left(\frac{-y \log a}{2\sqrt{1 - t^2}}\right)}{\left(\frac{x \log a}{2\sqrt{1 - t^2}}\right)} = -\frac{y}{x}$$
Hence proved.

Exercise 5.7

Question 1: Find the second order derivatives of the function. $x^2 + 3x + 2$

Solution 1:
Let
$$y = x^2 + 3x + 2$$

Then,
 $\frac{dy}{dx} = \frac{d}{dx}(x^2) + \frac{d}{dx}(3x) + \frac{d}{dx}(2) = 2x + 3 + 0 = 2x + 3$
 $\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}(2x + 3) = \frac{d}{dx}(2x) + \frac{d}{dx}(3) = 2 + 0 = 2$

Question 2:

Find the second order derivatives of the function. x^{20}

Solution 2: Let $y = x^{20}$ Then,

$$\frac{dy}{dx} = \frac{d}{dx}(x^{20}) = 20x^{19}$$
$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}(20x^{19}) = 20\frac{d}{dx}(x^{19}) = 20 \cdot 19 \cdot x^{18} = 380x^{18}$$

Question 3:

Find the second order derivatives of the function. $x \cdot \cos x$

Solution 3:

Let
$$y = x \cdot \cos x$$

Then,
 $\frac{dy}{dx} = \frac{d}{dx}(x \cdot \cos x) = \cos x \cdot \frac{d}{dx}(x) + x \frac{d}{dx}(\cos x) = \cos x \cdot 1 + x(-\sin x) = \cos x - x \sin x$
 $\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx}[\cos x - \sin x] = \frac{d}{dx}(\cos x) - \frac{d}{dx}(x \sin x)$
 $= -\sin x - [\sin x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\sin x)]$
 $= -\sin x - (\sin x + \cos x)$
 $= -(x \cos x + 2 \sin x)$

Question 4:

Find the second order derivatives of the function. $\log x$

Solution 4:

Let $y = \log x$ Then, $\frac{dy}{dx} = \frac{d}{dx}(\log x) = \frac{1}{x}$ $\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx}\left(\frac{1}{x}\right) = \frac{-1}{x^2}$

Question 5:

Find the second order derivatives of the function. $x^3 \log x$

Solution 5:

Let
$$y = x^{3} \log x$$

Then,
 $\frac{dy}{dx} = \frac{d}{dx} \Big[x^{3} \log x \Big] = \log x \cdot \frac{d}{dx} (x^{3}) + x^{3} \cdot \frac{d}{dx} (\log x)$
 $= \log x \cdot 3x^{2} + x^{3} \cdot \frac{1}{x} = \log x \cdot 3x^{2} + x^{2}$
 $= x^{2} (1 + 3 \log x)$
 $\therefore \frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \Big[x^{2} (1 + 3 \log x) \Big]$
 $= (1 + 3 \log x) \cdot \frac{d}{dx} (x^{2}) + x^{2} \frac{d}{dx} (1 + 3 \log x)$
 $= (1 + 3 \log x) \cdot 2x + x^{3} \cdot \frac{3}{x}$
 $= 2x + 6 \log x + 3x$
 $= 5x + 6x \log x$
 $= x(5 + 6 \log x)$

Question 6:

Find the second order derivatives of the function. $e^x \sin 5x$

Solution 6:
Let
$$y = e^x \sin 5x$$

 $\frac{dy}{dx} = \frac{d}{dx}(e^x \sin 5x) = \sin 5x \frac{d}{dx}(e^x) + e^x \frac{d}{dx}(\sin 5x)$
 $= \sin 5x \cdot e^x + e^x \cdot \cos 5x \cdot \frac{d}{dx}(5x) = e^x \sin 5x + e^x \cos 5x \cdot 5$
 $= e^x (\sin 5x + 5\cos 5x)$
 $\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \Big[e^x (\sin 5x + 5\cos 5x) \Big]$
 $= (\sin 5x + 5\cos 5x) \cdot \frac{d}{dx}(e^x) + e^x \cdot \frac{d}{dx}(\sin 5x + 5\cos 5x)$

Class XII - NCERT - Maths

Chapter 5 Continuity and Differentiability

$$= (\sin 5x + 5\cos 5x)e^{x} + e^{x} \left[\cos 5x \cdot \frac{d}{dx}(5x) + 5(-\sin 5x) \cdot \frac{d}{dx}(5x) \right]$$
$$= e^{x} (\sin 5x + 5\cos 5x) + e^{x} (5\cos 5x - 25\sin 5x)$$
Then, $e^{x} (10\cos 5x - 24\sin 5x) = 2e^{x} (5\cos 5x - 12\sin 5x)$

Question 7:

Find the second order derivatives of the function. $e^{6x} \cos 3x$

Solution 7:
Let
$$y = e^{6x} \cos 3x$$

Then,
 $\frac{dy}{dx} = \frac{d}{dx}(e^{6x} \cos 3x) = \cos 3x \cdot \frac{d}{dx}(e^{6x}) + e^{6x} \cdot \frac{d}{dx}(\cos 3x)$
 $= \cos 3x \cdot e^{6x} \cdot \frac{d}{dx}(6x) + e^{6x} \cdot (-\sin 3x) \cdot \frac{d}{dx}(3x)$
 $= 6e^{6x} \cos 3x - 3e^{6x} \sin 3x \dots (1)$
 $\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}(6e^{6x} \cos 3x - 3e^{6x} \sin 3x) = 6 \cdot \frac{d}{dx}(e^{6x} \cos 3x) - 3 \cdot \frac{d}{dx}(e^{6x} \sin 3x)$
 $= 6 \cdot [6e^{6x} \cos 3x - 3e^{6x} \sin 3x] - 3 \cdot [\sin 3x \cdot \frac{d}{dx}(e^{6x}) + e^{6x} \cdot \frac{d}{dx}(\sin 3x)]$ [using (1)]
 $= 36e^{6x} \cos 3x - 18e^{6x} \sin 3x - 3[\sin 3x \cdot e^{6x} \cdot 6 + e^{6x} \cdot \cos 3x - 3]$
 $= 36e^{6x} \cos 3x - 18e^{6x} \sin 3x - 18e^{6x} \sin 3x - 9e^{6x} \cos 3x$
 $= 27e^{6x} \cos 3x - 36e^{6x} \sin 3x$

Question 8: Find the second order derivatives of the function. $\tan^{-1} x$

Solution 8:

Let $y = \tan^{-1} x$ Then, Class XII - NCERT - Maths

Chapter 5 Continuity and Differentiability

$$\frac{dy}{dx} = \frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$
$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{1+x^2}\right) = \frac{d}{dx}(1+x^2)^{-1} = (-1)\cdot(1+x^2)^{-2}\cdot\frac{d}{dx}(1+x^2) - \frac{1}{(1+x^2)^2} \times 2x = -\frac{2x}{(1+x^2)^2}$$

Question 9:

Find the second order derivatives of the function. log(log x)

Solution 9:

Let
$$y = \log(\log x)$$

Then,

$$\frac{dy}{dx} = \frac{d}{dx}[\log(\log x)] = \frac{1}{\log x} \cdot \frac{d}{dx}(\log x) = \frac{1}{\log x} = (x \log x)^{-1}$$

$$\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx}[(x \log x)^{-1}] = (-1) \cdot (x \log x)^{-2} \frac{d}{dx}(x \log x)$$

$$= \frac{-1}{(x \log x)^2} \cdot \left[\log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x)\right]$$

$$= \frac{-1}{(x \log x)^2} \cdot \left[\log x \cdot 1x \cdot \frac{1}{x}\right] = \frac{-1(1 + \log x)}{(x \log x)^2}$$

Question 10: Find the second order derivatives of the function. sin(log x)

Solution 10: Let $y = \sin(\log x)$ Then, $\frac{dy}{dx} = \frac{d}{dx} [\sin(\log x)] = \cos(\log x) \cdot \frac{d}{dx} (\log x) = \frac{\cos(\log x)}{x}$ $\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} [\frac{\cos(\log x)}{x}]$

Chapter 5 Continuity and Differentiability

$$= \frac{x \cdot \frac{d}{dx} [\cos(\log x)] - \cos(\log x) \cdot \frac{d}{dx}(x)}{x^2}$$
$$= \frac{x \left[-\sin(\log x) \cdot \frac{d}{dx} (\log x)\right] - \cos(\log x) \cdot 1}{x^2}$$
$$= \frac{-x \sin(\log x) \cdot \frac{1}{x} - \cos(\log x)}{x^2}$$
$$= \frac{-[\sin(\log x) + \cos(\log x)]}{x^2}$$

Question 11:

If $y = 5\cos x - 3\sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$

Solution 11: It is given that, $y = 5\cos x - 3\sin x$ Then, $\frac{dy}{dx} = \frac{d}{dx}(5\cos x) - \frac{d}{dx}(3\sin x) = 5\frac{d}{dx}(\cos x) - 3\frac{d}{dx}(\sin x)$ $= 5(-\sin x) - 3\cos x = -(5\sin x + 3\cos x)$ $\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx}[-(5\sin x + 3\cos x)]$ $= -\left[5 \cdot \frac{d}{dx}(\sin x) + 3 \cdot \frac{d}{dx}(\cos x)\right]$ $= [5\cos x + 3(-\sin x)]$ = -y $\therefore \frac{d^2 y}{dx^2} + y = 0$ Hence, proved.

Question 12: If $y = \cos^{-1} x$, find $\frac{d^2 y}{dx^2}$ in terms of y alone. **Solution 12:** It is given that, $y = \cos^{-1} x$ Then, $\frac{dy}{dx} = \frac{d}{dx}(\cos^{-1}x) = \frac{-1}{\sqrt{1-x^2}} = -(1-x^2)^{\frac{-1}{2}}$ $\frac{d^2 y}{dx^2} = \frac{d}{dx} \left[-(1-x^2)^{\frac{-1}{2}} \right]$ $=\left(-\frac{1}{2}\right) \cdot (1-x^2)^{\frac{-3}{2}} \cdot \frac{d}{dx}(1-x^2)$ $=\frac{1}{\sqrt{\left(1-x^2\right)^3}}\times(-2x)$ $\Rightarrow \frac{d^2 y}{dx^2} = \frac{-x}{\sqrt{(1-x^2)^3}} \dots (i)$ $y = \cos^{-1} x \Longrightarrow x = \cos y$ Putting $x = \cos y$ in equation (i), we obtain $\frac{d^2 y}{dx^2} = \frac{-\cos y}{\sqrt{\left(1 - \cos^2 y\right)^3}}$ $\Rightarrow \frac{d^2 y}{dx^2} = \frac{-\cos y}{\sqrt{\left(\sin^2 y\right)^3}}$ $\frac{-\cos y}{\sin^3 y}$ $=\frac{-\cos y}{\sin y}\times\frac{1}{\sin^2 y}$ $\Rightarrow \frac{d^2 y}{dr^2} = \cot y \cdot \csc^2 y$

Question 13: If $y = 3\cos(\log x) + 4\sin(\log x)$, show that $x^2y_2 + xy_1 + y = 0$ **Solution 13:** It is given that, $y = 3\cos(\log x) + 4\sin(\log x)$ and $x^2y_2 + xy_1 + y = 0$ Then, $y_1 = 3 \cdot \frac{d}{dx} [\cos(\log x)] + 4 \cdot \frac{d}{dx} [\sin(\log x)]$ $= 3 \cdot \left[-\sin(\log x) \cdot \frac{d}{dx} (\log x) \right] + 4 \cdot \left[\cos(\log x) \cdot \frac{d}{dx} (\log x) \right]$ $\therefore y_1 = \frac{-3\sin(\log x)}{r} + \frac{4\cos(\log x)}{r} = \frac{4\cos(\log x) - 3\sin(\log x)}{r}$ $\therefore y_2 = \frac{d}{dx} \left(\frac{4\cos(\log x) - 3\sin(\log x)}{x} \right)$ $= x \frac{\{4\cos(\log x) - 3\sin(\log x)\}' - \{4\cos(\log x) - 3\sin(\log x)\}(x)'}{2}$ $= x \frac{\left[4\left(\cos(\log x)\right) - \left(-3\sin(\log x)\right)'\right] - \left\{4\cos(\log x) - 3\sin(\log x)\right\} \cdot 1}{x^2}$ $=x\frac{\left[-4\sin(\log x) \cdot (\log x)' - 3\cos(\log x)(\log x)'\right] - 4\cos(\log x) + 3\sin(\log x)}{x^{2}}$ $= x \frac{\left[-4\sin(\log x)\frac{1}{x} - 3\cos(\log x)\frac{1}{x}\right] - 4\cos(\log x) + 3\sin(\log x)}{x^2}$ $=\frac{-4\sin(\log x) - 3\cos(\log x) - 4\cos(\log x) + 3\sin(\log x)}{x^{2}}$ $=\frac{-\sin(\log x)-7\cos(\log x)}{x^2}$ $\therefore x^2 y_2 + x y_1 + y_2$ $=x^{2}\left(\frac{-\sin(\log x)-7\cos(\log x)}{x^{2}}\right)+x\left(\frac{4\cos(\log x)-3\sin(\log x)}{x}\right)+3\cos(\log x)+4\sin(\log x)$ $=-\sin(\log x) - 7\cos(\log x) + 4\cos(\log x) - 3\sin(\log x) + 3\cos(\log x) + 4\sin(\log x)$ = 0Hence, proved.

Chapter 5 Continuity and Differentiability

Question 14:

If
$$y = Ae^{mx} + Be^{nx}$$
, show that $\frac{d^2y}{dx^2} - (m+n)\frac{dy}{dx} + mny = 0$

Solution 14:

It is given that, $y = Ae^{mx} + Be^{nx}$

Then,

$$\frac{dy}{dx} = A \cdot \frac{d}{dx}(e^{nx}) + B \cdot \frac{d}{dx}(e^{nx}) = A \cdot e^{mx} \cdot \frac{d}{dx}(mx) + B \cdot e^{nx} \cdot \frac{d}{dx}(nx) = Ame^{mx} + Bne^{nx}$$

$$\frac{d^2 y}{dx^2} = \frac{d}{dx}\left(Ame^{mx} + Bne^{nx}\right) = Am \cdot \frac{d}{dx}(e^{mx}) + Bn \cdot \frac{d}{dx}(e^{nx})$$

$$= Am \cdot e^{mx} \cdot \frac{d}{dx}(mx) + bn \cdot e^{nx} \cdot \frac{d}{dx}(nx) = Am^2 e^{mx} + Bn^2 e^{nx}$$

$$\therefore \frac{d^2 y}{dx^2} - (m+n)\frac{dy}{dx} + mny$$

$$= Am^2 e^{mx} + Bn^2 e^{nx} - (m+n) \cdot (Ame^{mx} + Bne^{nx}) + mn(Ae^{mx} + Be^{nx})$$

$$= Am^2 ex^{mx} + Bn^2 e^{nx} - Am^2 ex^{mx} - Bmne^{nx} - Amne^{mx} - Bn^2 e^{mx} + Amne^{mx} + Bmne^{nx}$$

$$= 0$$
Hence, Proved.

Question 15:

If $y = 500e^{7x} + 600e^{-7x}$, show that $\frac{d^2y}{dx^2} = 49y$

Solution 15: It is given that, $y = 500e^{7x} + 600e^{-7x}$ Then, $\frac{dy}{dx} = 500 \cdot \frac{d}{dx}(e^{7x}) + 600 \cdot \frac{d}{dx}(e^{-7x})$ $= 500 \cdot e^{7x} \cdot \frac{d}{dx}(7x) + 600 \cdot e^{-7x} \cdot \frac{d}{dx}(-7x)$ $= 3500e^{7x} - 4200e^{-7x}$ $\therefore \frac{d^2y}{dx^2} = 3500 \cdot \frac{d}{dx}(e^{7x}) - 4200 \cdot \frac{d}{dx}(e^{-7x})$

Chapter 5 Continuity and Differentiability

$$= 3500 \cdot e^{7x} \cdot \frac{d}{dx} (7x) - 4200 \cdot e^{-7x} \cdot \frac{d}{dx} (-7x)$$

= 7 × 3500 · e^{7x} + 7 × 4200 · e^{-7x}
= 49 × 500e^{7x} + 49 × 600e^{-7x}
= 49 (500e^{7x} + 600e^{-7x})
= 49 y
Hence, proved.

Question 16:

If
$$e^{y}(x+1) = 1$$
, show that $\frac{d^{2}y}{dx^{2}} = \left(\frac{dy}{dx}\right)^{2}$

Solution 16:

The given relationship is $e^{y}(x+1) = 1$ $e^{y}(x+1) = 1$ $\Rightarrow e^{y} = \frac{1}{x+1}$ Taking logarithm on both sides, we obtain $y = \log \frac{1}{(x+1)}$

Differentiating this relationship with respect to x, we obtain $\frac{1}{1}$

$$\frac{dy}{dx} = (x+1)\frac{d}{dx}\left(\frac{1}{(x+1)}\right) = (x+1)\cdot\frac{-1}{(x+1)^2} = \frac{-1}{x+1}$$
$$\therefore \frac{d^2y}{dx^2} = \frac{d}{dx} = \left(\frac{1}{x+1}\right) = -\left(\frac{-1}{(x+1)^2}\right) = \frac{1}{(x+1)^2}$$
$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{-1}{x+1}\right)^2$$
$$\Rightarrow \frac{d^2y}{dx^2} = \left(\frac{dy}{dx}\right)^2$$

Hence, proved.

Question 17:

If $y = (\tan^{-1} x)^2$, show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1)y_1 = 2$

Solution 17:

The given relationship is $y = (\tan^{-1} x)^2$ Then,

$$y_1 = 2 \tan^{-1} x \frac{d}{dx} (\tan^{-1} x)$$
$$\Rightarrow y_1 = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2}$$
$$\Rightarrow (1 + x^2) y_1 = 2 \tan^{-1} x$$

Again differentiating with respect to x on both sides, we obtain

$$(1+x^{2})y_{2}+2xy_{1} = 2\left(\frac{1}{1+x^{2}}\right)$$
$$\Rightarrow (1+x^{2})y_{2}+2x(1+x^{2})y_{1} = 2$$
Hence, proved.

Exercise 5.8

Question 1:

Verify Rolle's Theorem for the function $f(x) = x^2 + 2x - 8, x \in [-4, 2]$

Solution 1:

The given function, $f(x) = x^2 + 2x - 8$, being polynomial function, is continuous in [-4,2] and is differentiable in (-4,2). $f(-4) = (-4)^2 + 2x(-4) - 8 = 16 - 8 - 8 = 0$

$$f(-4) = (-4)^{2} + 2x(-4) - 8 = 10 - 8 - 8 = 0$$

$$f(2) = (2)^{2} + 2 \times 2 - 8 = 4 + 4 - 8 = 0$$

$$\therefore f(-4) = f(2) = 0$$

$$\Rightarrow \text{ The value of } f(x) \text{ at } -4 \text{ and } 2 \text{ coincides.}$$

Rolle's Theorem states that there is a point $c \in (-4, 2)$ such that $f'(c) = 0$

 $f(x) = x^{2} + 2x - 8$ $\Rightarrow f'(x) = 2x + 2$ $\therefore f'(c) = 0$ $\Rightarrow 2c + 2 = -1$ $\Rightarrow c = -1$ $c = -1 \in (-4, 2)$

Hence, Rolle's Theorem is verified for the given function.

Question 2:

Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?

i. f(x) = [x] for $x \in [5,9]$ ii. f(x) = [x] for $x \in [-2,2]$ iii. $f(x) = x^2 - 1$ for $x \in [1,2]$

Solution 2:

By Rolle's Theorem, for a function $f:[a,b] \rightarrow R$, if

- a) f is continuous on [a, b]
- b) f is continuous on (a, b)
- c) f(a) = f(b)

Then, there exists some $c \in (a,b)$ such that f'(c) = 0

Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.

(i)
$$f(x) = [x]$$
 for $x \in [5,9]$

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9

 $\Rightarrow f(x)$ is not continuous in [5, 9].

Also
$$f(5) = [5] = 5$$
 and $f(9) = [9] = 9$

$$\therefore f(5) \neq f(9)$$

The differentiability of f in (5, 9) is checked as follows.

Let n be an integer such that $n \in (5,9)$

The left hand limit limit of f at x = n is.

$$\lim_{x \to 0'} \frac{f(n+h) - f(n)}{h} = \lim_{x \to 0'} \frac{[n+h] - [n]}{h} = \lim_{x \to 0'} \frac{n - 1 - n}{h} = \lim_{x \to 0'} 0 = 0$$

The right hand limit of f at x = n is,

Chapter 5 Continuity and Differentiability

$$\lim_{h \to 0'} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0'} \frac{[n+h] - [n]}{h} = \lim_{h \to 0'} \frac{n-n}{h} = \lim_{h \to 0'} 0 = 0$$

Since the left and right hand limits of *f* at x = n are not equal, *f* is not differentiable at x = n $\therefore f$ is not differentiable in (5, 9).

It is observed that f does not satisfy all the conditions of the hypothesis of Rolle's Theorem. Hence, Rolle's Theorem is not applicable for f(x) = [x] for $x \in [5,9]$.

(ii)
$$f(x) = [x] \text{ for } x \in [-2, 2]$$

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = -2 and x = 2

 $\Rightarrow f = (x)$ is not continuous in [-2,2]

Also,
$$f(-2) = [2] = -2$$
 and $f(2) = [2] = 2$

$$\therefore f(-2) \neq f(2)$$

The differentiability of in (-2, 2) is checked as follows.

Let n be an integer such that $n \in (-2, 2)$.

The left hand limit of f at x = n is,

$$\lim_{h \to 0^{\circ}} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^{\circ}} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^{\circ}} \frac{n-1-n}{h} = \lim_{h \to 0^{\circ}} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is,

$$\lim_{h \to 0'} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0'} \frac{[n+h] - [n]}{h} = \lim_{h \to 0'} \frac{n-n}{h} = \lim_{h \to 0'} 0 = 0$$

Since the left and right hand limits of *f* at x = n are not equal, *f* is not differentiable at x = n $\therefore f$ is not continuous in (-2,2).

It is observed that *f* does not satisfy all the conditions of the hypothesis of Rolle's Theorem. Hence, Roller's Theorem is not applicable for f(x) = [x] for $x \in [-2, 2]$

(iii) $f(x) = x^2 - 1$ for $x \in [1, 2]$

It is evident that f, being a polynomial function, is continuous in [1, 2] and is differentiable in (1, 2).

 $f(1) = (1)^{2} - 1 = 0$ f(2) = (2)² - 1 = 3 ∴ f(1) ≠ f(2)

It is observed that *f* does not satisfy a condition of the hypothesis of Roller's Theorem. Hence, Roller's Theorem is not applicable for $f(x) = x^2 - 1$ for $x \in [1, 2]$.

Question 3:

If $f:[-5,5] \rightarrow R$ is a differentiable function and if f'(x) does not vanish anywhere, then prove that $f(-5) \neq f(5)$.

Solution 3:

It is given that $f:[-5,5] \rightarrow R$ is a differentiable function.

Since every differentiable function is a continuous function, we obtain

- a) f is continuous on [-5,5].
- b) f is continuous on (-5,5).

Therefore, by the Mean Value Theorem, there exists $c \in (-5,5)$ such that

not vanish anywhere.

$$f'(c) = \frac{f(5) - f(-5)}{5 - (-5)}$$

$$\Rightarrow 10f'(c) = f(5) - f(-5)$$

It is also given that $f'(x)$ does

$$\therefore f'(c) \neq 0$$

$$\Rightarrow 10f'(c) \neq 0$$

$$\Rightarrow f(5) - f(-5) \neq 0$$

$$\Rightarrow f(5) \neq f(-5)$$

Hence, proved.

Question 4:

Verify Mean Value Theorem, if $f(x) = x^2 - 4x - 3$ in the interval [a, b], where a = 1 and b = 4

Solution 4:

The given function is $f(x) = x^2 - 4x - 3$

f, being a polynomial function, is a continuous in [1, 4] and is differentiable in (1, 4) whose derivative is 2x-4

$$f(1) = 1^{2} - 4 \times 1 - 3 = 6, f(4) = 4^{2} - 4 \times 4 - 3 = -3$$

$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(4) - f(1)}{4 - 1} = \frac{-3 - (-6)}{3} = \frac{3}{3} = 1$$

Mean Value Theorem states that there is a point $c \in (1,4)$ such that f'(c) = 1

$$f'(c) = 1$$

$$\Rightarrow 2c - 4 = 1$$

$$\Rightarrow c = \frac{5}{2}, \text{ where } c = \frac{5}{2} \in (1, 4)$$

Hence, Mean Value Theorem is verified for the given function.

Question 5:

Verify Mean Value theorem, if $f(x) = x^2 - 5x^2 - 3x$ in the interval [a, b], where a = 1 and b = 3. Find all $c \in (1,3)$ for which f'(c) = 0

Solution 5:

The given function *f* is $f(x) = x^2 - 5x^2 - 3x$ *f*, being a polynomial function, is continuous in [1, 3], and is differentiable in (1, 3) Whose derivative is $3x^2 - 10x - 3$ $f(1) = 1^2 - 5 \times 1^2 - 3 \times 1 = -7$, $f(3) = 3^3 - 3 \times 3 = 27$ $\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(3) - f(1)}{3 - 1} = \frac{-27 - (-7)}{3 - 1} = -10$ Mean Value Theorem states that there exist a point $c \in (1,3)$ such that f'(c) = -10 f'(c) = -10 $\Rightarrow 3c^2 - 10c - 3 = 10$ $\Rightarrow 3c^2 - 10c + 7 = 0$ $\Rightarrow 3c^2 - 3c - 7c + 7 = 0$ $\Rightarrow 3c(c - 1) - 7(c - 1) = 0$ $\Rightarrow (c - 1)(3c - 7) = 0$ $\Rightarrow c = 1, \frac{7}{3}$ where $c = \frac{7}{3} \in (1,3)$

Hence, Mean Value Theorem is verified for the given function and $c = \frac{7}{3} \in (1,3)$ is the only point for which f'(c) = 0

Question 6:

Examine the applicability of Mean Value Theorem for all three functions given in the above exercise 2.

Solution 6: Mean Value Theorem states that for a function $f:[a,b] \rightarrow R$, if

- a) *f* is continuous on [a, b]
- b) *f* is continuous on (a, b)

Then, there exists some $c \in (a,b)$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$

Therefore, Mean Value Theorem is not applicable to those functions that do not satisfy any of the two conditions of the hypothesis.

(i) f(x) = [x] for $x \in [5,9]$

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = 5 and x = 9

is not continuous in [5, 9].

The differentiability of f in (5, 9) is checked as follows,

Let n be an integer such that $n \in (5,9)$.

The left hand limit of f at x = n is.

$$\lim_{h \to 0^{-}} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^{-}} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^{-}} \frac{n-1-n}{h} = \lim_{h \to 0^{-}} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is.

$$\lim_{h \to 0^+} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^+} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^+} \frac{n-n}{h} = \lim_{h \to 0^+} 0 = 0$$

Since the left and right hand limits of *f* at x = n are not equal, *f* is not differentiable at x = n $\therefore f$ is not differentiable in (5, 9).

It is observed that *f* does not satisfy all the conditions of the hypothesis of Mean Value Theorem. Hence, Mean Value Theorem is not applicable for f(x) = [x] for $x \in [5,9]$

(ii)
$$f(x) = [x]$$
 for $x \in [-2, 2]$

It is evident that the given function f(x) is not continuous at every integral point.

In particular, f(x) is not continuous at x = -2 and x = 2

 $\Rightarrow f(x)$ is not continuous in [-2,2].

The differentiability of f in (-2, 2) is checked as follows.

Let *n* be an integer such that $n \in (-2, 2)$.

The left hand limit of f at x = n is.

$$\lim_{h \to 0^{\circ}} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0^{\circ}} \frac{[n+h] - [n]}{h} = \lim_{h \to 0^{\circ}} \frac{n-1-n}{h} = \lim_{h \to 0^{\circ}} \frac{-1}{h} = \infty$$

The right hand limit of f at x = n is.

$$\lim_{h \to 0'} \frac{f(n+h) - f(n)}{h} = \lim_{h \to 0'} \frac{[n+h] - [n]}{h} = \lim_{h \to 0'} \frac{n-n}{h} = \lim_{h \to 0'} 0 = 0$$

Since the left and right hand limits of *f* at x = n are not equal, *f* is not differentiable at x = n $\therefore f$ is not differentiable in (-2,2).

It is observed that *f* does not satisfy all the conditions of the hypothesis of Mean Value Theorem. Hence, Mean Value Theorem is not applicable for f(x) = [x] for $x \in [-2, 2]$. (iii) $f(x) = x^2 - 1$ for $x \in [1, 2]$

It is evident that f, being a polynomial function, is a continuous in [1, 2] and is differentiable in (1, 2)

It is observed that f satisfies all the conditions of the hypothesis of Mean Value Theorem.

Hence, Mean Value Theorem is applicable for $f(x) = x^2 - 1$ for $x \in [1,2]$

It can be proved as follows.

$$f(1) = 1^{2} - 1 = 0, f(2) = 2^{2} - 1 = 3$$

$$\therefore \frac{f(b) - f(a)}{b - a} = \frac{f(2) - f(1)}{2 - 1} = \frac{3 - 0}{1} = 3$$

$$f'(x) = 2x$$

$$\therefore f'(c) = 3$$

$$\Rightarrow 2c = 3$$

$$\Rightarrow c = \frac{3}{2} = 1.5, \text{ where } 1.5 \in [1, 2]$$

Miscellaneous Exercise

Question 1: Differentiate the function w.r.t x $(3x^2 - 9x + 5)^9$ Solution 1: Let $y = (3x^2 - 9x + 5)^9$ Using chain rule, we obtain $\frac{dy}{dx} = \frac{d}{dx} = (3x^2 - 9x + 5)^9$ $= 9(3x^2 - 9x + 5)^8 \cdot \frac{d}{dx}(3x^2 - 9x + 5)$ $= 9(3x^2 - 9x + 5)^8 \cdot (6x - 9)$ $= 9(3x^2 - 9x + 5)^8 \cdot 3(2x - 3)$ $= 27(3x^2 - 9x + 5)^8(2x - 3)$

Question 2:

Differentiate the function w.r.t x $\sin^3 x + \cos^6 x$

Solution 2:

Let $y = \sin^3 x + \cos^6 x$

 $\therefore \frac{dy}{dx} = \frac{d}{dx}(\sin^3 x) + \frac{d}{dx}(\cos^6 x)$ $= 3\sin^2 x \cdot \frac{d}{dx}(\sin x) + 6\cos^5 x \cdot \frac{d}{dx}(\cos x)$ $= 3\sin^2 x \cdot \cos x + 6\cos^5 x \cdot (-\sin x)$ $= 3\sin x \cos x (\sin x - 2\cos^4 x)$

Question 3:

Differentiate the function w.r.t x $(5x)^{3\cos 2x}$

Solution 3:

Let $y = (5x)^{3\cos 2x}$ Taking logarithm on both sides, we obtain $\log y = 3\cos 2x\log 5x$ Differentiating both sides with respect to x, we obtain $\frac{1}{y}\frac{dy}{dx} = 3\left[\log 5x \cdot \frac{d}{dx}(\cos 2x) + \cos 2x \cdot \frac{d}{dx}(\log 5x)\right]$ $\Rightarrow \frac{dy}{dx} = 3y\left[\log 5x(-\sin 2x) \cdot \frac{d}{dx}(2x) + \cos 2x \cdot \frac{1}{5x} \cdot \frac{d}{dx}(5x)\right]$ $\Rightarrow \frac{dy}{dx} = 3y\left[-2\sin x\log 5x + \frac{\cos 2x}{x}\right]$ $\Rightarrow \frac{dy}{dx} = 3y\left[\frac{3\cos 2x}{x} - 6\sin 2x\log 5x\right]$ $\therefore \frac{dy}{dx} = (5x)^{3\cos 2x}\left[\frac{3\cos 2x}{x} - 6\sin 2x\log 5x\right]$
Question 4:

Differentiate the function w.r.t x

$$\sin^{-1}(x\sqrt{x}), 0 \le x \le 1$$

Solution 4:
Let $y = \sin^{-1}(x\sqrt{x})$
Using chain rule, we obtain
$$\frac{dy}{dx} = \frac{d}{dx}\sin^{-1}(x\sqrt{x})$$
$$= \frac{1}{\sqrt{1 - (x\sqrt{x})^3}} \times \frac{d}{dx}(x\sqrt{x})$$
$$= \frac{1}{\sqrt{1 - x^3}} \cdot \frac{d}{dx}\left(x^{\frac{1}{2}}\right)$$
$$= \frac{1}{\sqrt{1 - x^3}} \times \frac{3}{2} \cdot x^{\frac{1}{2}}$$
$$= \frac{3\sqrt{x}}{2\sqrt{1 - x^3}}$$
$$= \frac{3}{2}\sqrt{\frac{x}{1 - x^3}}$$

Question 5: Differentiate the function w.r.t x

$$\frac{\cos^{-1}\frac{x}{2}}{\sqrt{2+7'}}, -2 < x < 2$$

Solution 5:

Let
$$y = \frac{\cos^{-1} \frac{x}{2}}{\sqrt{2+7'}}$$

By quotient rule, we obtain

Class XII - NCERT - Maths

Chapter 5 Continuity and Differentiability

$$\frac{dy}{dx} = \frac{\sqrt{2x+7} \frac{d}{dx} \left(\cos^{-1} \frac{x}{2}\right) - \left(\cos^{-1} \frac{x}{2}\right) \frac{d}{dx} \left(\sqrt{2x+7}\right)}{\left(\sqrt{2x+7}\right)^2}$$
$$= \frac{\sqrt{2x+7} \left[\frac{-1}{\sqrt{1-\left(\frac{x}{2}\right)^2}} \cdot \frac{d}{dx} \left(\frac{x}{2}\right)\right] - \left(\cos^{-1} \frac{x}{2}\right) \frac{1}{2\sqrt{2x+7}} \cdot \frac{d}{dx} (2x+7)}{\frac{2x+7}{\sqrt{4-x^2}} - \left(\cos^{-1} \frac{x}{2}\right) \frac{2}{2\sqrt{2x+7}}}$$
$$= \frac{\sqrt{2x+7}}{\sqrt{4-x^2}x(2x+7)} - \frac{\cos^{-1} \frac{x}{2}}{\left(\sqrt{2x+7}\right)(2x+7)}$$
$$= -\left[\frac{1}{\sqrt{4-x^2}\sqrt{2x+7}} + \frac{\cos^{-1} \frac{x}{2}}{\left(2x+7\right)^{\frac{3}{2}}}\right]$$

Question 6:

Differentiate the function w.r.t x

$$\cot^{-1}\left[\frac{\sqrt{(1+\sin x)} + \sqrt{(1-\sin x)}}{\sqrt{(1+\sin x)} - \sqrt{(1-\sin x)}}\right], 0 < x < \frac{\pi}{2}$$

Solution 6:

Chapter 5 Continuity and Differentiability

 $= \frac{(1+\sin x) + (1-\sin x) + 2\sqrt{(1+\sin x) - (1-\sin x)}}{(1+\sin x) - (1-\sin x)}$ $= \frac{2+2\sqrt{1-\sin^2 x}}{2\sin x}$ $= \frac{1+\cos x}{\sin x}$ $= \frac{2\cos^2 \frac{x}{2}}{2\sin \frac{x}{2}\cos \frac{x}{2}}$ $= \cot \frac{x}{2}$ Therefore, equation (1) becomes $y = \cot^{-1}\left(\cot \frac{x}{2}\right)$ $\Rightarrow y = \frac{x}{2}$ $\therefore \frac{dy}{dx} = \frac{1}{2}\frac{d}{dx}(x)$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2}$

Question 7: Differentiate the function w.r.t x $(\log x)^{\log x}, x > 1$

Solution 7: Let $y = (\log x)^{\log x}$ Taking logarithm on both sides, we obtain $\log y = \log x \cdot \log(\log x)$ Differentiating both sides with respect to x, we obtain

Chapter 5 Continuity and Differentiability

$$\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left[\log x \cdot \log(\log x)\right]$$

$$\Rightarrow \frac{1}{y}\frac{dy}{dx} = \log(\log x) \cdot \frac{d}{dx}(\log x) + \log x \cdot \frac{d}{dx}[\log(\log x)]$$

$$\Rightarrow \frac{dy}{dx} = y\left[\log(\log x) \cdot \frac{1}{x} + \log x \cdot \frac{1}{\log x} \cdot \frac{d}{dx}(\log x)\right]$$

$$\Rightarrow \frac{dy}{dx} = y\left[\frac{1}{x}\log(\log x) + \frac{1}{x}\right]$$

$$\therefore \frac{dy}{dx} = (\log x)^{\log x}\left[\frac{1}{x} + \frac{\log(\log x)}{x}\right]$$

Question 8: Differentiate the function w.r.t x cos(acos x + bsin x), for some constant a and b.

Solution 8:
Let
$$y = \cos(a\cos x + b\sin x)$$

By Using chain rule, we obtain
 $\frac{dy}{dx} = \frac{d}{dx}\cos(a\cos x + b\sin x)$
 $\Rightarrow \frac{dy}{dx} = -\sin(a\cos x + b\sin x) \cdot \frac{d}{dx}(a\cos x + b\sin x)$
 $= -\sin(a\cos x + b\sin x) \cdot [a(-\sin x) + b\cos x]$
 $= (a\sin x + b\cos x) \cdot \sin(a\cos x + b\sin x)$

Question 9: Differentiate the function w.r.t x $(\sin x - \cos x)^{(\sin x - \cos x)}, \frac{\pi}{4} < x < \frac{3\pi}{4}$ Solution 9: Let $y = (\sin x - \cos x)^{(\sin x - \cos x)}$

Taking logarithm on both sides, we obtain

$$\log y = \log \left[(\sin x - \cos x)^{(\sin x - \cos x)} \right]$$

$$\Rightarrow \log y = (\sin x - \cos x) \cdot \log(\sin x - \cos x)$$

Differentiating both sides with respect to x, we obtain

$$\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} \left[(\sin x - \cos x) \cdot \log(\sin x - \cos x) \right]$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \log(\sin x - \cos x) \cdot \frac{d}{dx} (\sin x - \cos x) + (\sin x - \cos x) \cdot \frac{d}{dx} \log(\sin x - \cos x)$$

$$\Rightarrow \frac{1}{y} \frac{dy}{dx} = \log(\sin x - \cos x) \cdot (\cos x + \sin x) + (\sin x - \cos x) \cdot \frac{1}{(\sin x - \cos x)} \cdot \frac{d}{dx} (\sin x - \cos x)$$

$$\Rightarrow \frac{dy}{dx} = (\sin x - \cos x)^{(\sin x - \cos x)} [(\cos x + \sin x) \cdot \log(\sin x - \cos x) + (\cos x + \sin x)]$$

$$\Rightarrow \frac{dy}{dx} = (\sin x - \cos x)^{(\sin x - \cos x)} (\cos x + \sin x) [1 + \log(\sin x - \cos x)]$$

Question 10:

Differentiate the function w.r.t x $x^{x} + x^{a} + a^{x} + a^{a}$, for some fixed a > 0 and x > 0

Solution 10:

Let
$$y = x^{x} + x^{a} + a^{x} + a^{a}$$

Also, let $x^{x} = u$, $x^{a} = v$, $a^{x} = w$ and $a^{a} = s$
 $\therefore y = u + v + w + s$
 $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx} + \frac{dw}{dx} + \frac{ds}{dx}$ (1)
 $u = x^{x}$
 $\Rightarrow \log u = \log x^{x}$
 $\Rightarrow \log u = \log x$
Differentiating both sides with respect to x, we obtain
 $\frac{1}{u}\frac{du}{dx} = \log x \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(\log x)$
 $\Rightarrow \frac{du}{dx} = u \left[\log x \cdot 1 + x \cdot \frac{1}{x} \right]$
 $\Rightarrow \frac{du}{dx} = x^{x} [\log x + 1] = x^{x}(1 + \log x)$ (2)

 $v = x^a$ $\therefore \frac{dv}{dx} = \frac{d}{dx}(x^a)$ $\Rightarrow \frac{dv}{dx} = ax^{a-1}$(3) $w = a^x$ $\Rightarrow \log w = \log a^x$ $\Rightarrow \log w = x \log a$ Differentiating both sides with respect to x, we obtain $\frac{1}{w} \cdot \frac{dw}{dx} = \log a \cdot \frac{d}{dx}(x)$ $\Rightarrow \frac{dw}{dx} = w \log a$ $\Rightarrow \frac{dw}{dx} = a^x \log a$(4) $s = a^a$ Since a is constant, a^a is also a constant. $\therefore \frac{ds}{dx} = 0$(5) From (1), (2), (3), (4), and (5), we obtain $\frac{dy}{dx} = x^{x}(1 + \log x) + ax^{a-1} + a^{x}\log a + 0$ $= x^{x} (1 + \log x) + ax^{a-1} + a^{x} \log a$

Question 11: Differentiate the function w.r.t x $x^{x^{2}-3} + (x-3)^{x^{2}}$, for x > 3Solution 11: Let $y = x^{x^{2}-3} + (x-3)^{x^{2}}$

Let $y = x^{x^{2}-3} + (x-3)^{x}$ Also, let $u = x^{x^{2}-3}$ and $v = (x-3)^{x^{2}}$ $\therefore y = u + v$ Differentiating both sides with respect to x, we obtain $\frac{dv}{dx} = \frac{du}{dx} + \frac{dv}{dx}$ (1) $u = x^{x^{2}-3}$

 $\therefore \log u = \log \left(x^{x^2 - 3} \right)$ $\log u = (x^2 - 3)\log x$ Differentiating both sides with respect to x, we obtain $\frac{1}{u}\frac{du}{dx} = \log x \cdot \frac{d}{dx}(x^2 - 3) + (x^2 - 3) \cdot \frac{d}{dx}(\log x)$ $\Rightarrow \frac{1}{u} \frac{du}{dx} = \log x \cdot 2x + \left(x^2 - 3\right) \cdot \frac{1}{3}$ $\Rightarrow \frac{du}{dx} = x^{x^2 - 3} \cdot \left| \frac{x^2 - 3}{x} + 2 \times \log x \right|$ Also. $v = (x-3)^{x^2}$ $\therefore \log v = \log(x-3)^{x^2}$ $\Rightarrow \log v = x^2 \log(x-3)$ Differentiating both sides with respect to x, we obtain $\frac{1}{v} \cdot \frac{dv}{dx} = \log(x-3) \cdot \frac{d}{dx} \left(x^2\right) + x^2 \cdot \frac{d}{dx} \left[\log(x-3)\right]$ $\Rightarrow \frac{1}{v} \cdot \frac{dv}{dx} = \log(x-3) \cdot 2x + x^2 \cdot \frac{1}{x-3} \cdot \frac{d}{dx} (x-3)$ $\Rightarrow \frac{dv}{dx} = v \left| 2x \log(x-3) + \frac{x^2}{x-3} \cdot 1 \right|$ $\Rightarrow \frac{dv}{dx} = (x-3)^{x^2} \left| \frac{x^2}{x-3} + 2x \log(x-3) \right|$ Substituting the expressions of $\frac{du}{dx}$ and $\frac{dv}{dx}$ in equation (1), we obtain $\frac{dy}{dx} = x^{x^2 - 3} \left[\frac{x^2 - 3}{x} + 2x \log x \right] + (x - 3)x^2 \left[\frac{x^2}{x - 3} + 2x \log(x - 3) \right]$ **Ouestion 12**.

Find
$$\frac{dy}{dx}$$
, if $y = 12(1 - \cos t)$, $x = 10(t - \sin t)$, $\frac{\pi}{2} < t < \frac{\pi}{2}$
 $-\frac{\pi}{2} < t < \frac{\pi}{2}$
Solution 12:

Chapter 5 Continuity and Differentiability

It is given that
$$y = 12(1 - \cos t), x = 10(t - \sin t)$$

$$\therefore \frac{dx}{dt} = \frac{d}{dt} [10(t - \sin t)] = 10 \cdot \frac{d}{dt} (t - \sin t) = 10(1 - \cos t)$$

$$\frac{dy}{dx} = \frac{d}{dx} [12(1 - \cos t)] = 12 \cdot \frac{d}{dt} (1 - \cos t) = 12 \cdot [0 - (-\sin t)] = 12 \sin t$$

$$\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{12 \sin t}{10(1 - \cos t)} = \frac{12 \cdot 2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}{10 \cdot 2 \sin^2 \frac{t}{2}} = \frac{6}{5} \cot \frac{t}{2}$$

Question 13:
Find
$$\frac{dy}{dx}$$
, if $y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$, $-1 \le x \le 1$

Solution 13:

It is given that
$$y = \sin^{-1} x + \sin^{-1} \sqrt{1 - x^2}$$

$$\therefore \frac{dy}{dx} = \frac{d}{dx} \left[\sin^{-1} x + \sin^{-1} \sqrt{1 - x^2} \right]$$

$$\Rightarrow \frac{dy}{dx} = \frac{d}{dx} (\sin^{-1} x) + \frac{d}{dx} (\sin^{-1} \sqrt{1 - x^2})$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{\sqrt{1}(\sqrt{1 - x^2})} \cdot \frac{d}{dx} (\sqrt{1 - x^2})$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{x} \cdot \frac{1}{2\sqrt{1 - x^2}} \cdot \frac{d}{dx} (1 - x^2)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} + \frac{1}{2x\sqrt{1 - x^2}} (-2x)$$

$$\Rightarrow \frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}}$$

$$\therefore \frac{dy}{dx} = 0$$

Chapter 5 Continuity and Differentiability

Question 14: If $x\sqrt{1+y} + y\sqrt{1+x} = 0$, for -1 < x < 1, prove that $\frac{dy}{dx} = -\frac{1}{(1+x)^2}$ Solution 14: It is given that, $x\sqrt{1+y} + y\sqrt{1+x} = 0$ $x\sqrt{1+y} = -y\sqrt{1+x}$ Squaring both sides, we obtain $x^2(1+y) = y^2(1+x)$ $\Rightarrow x^2 + x^2y = y^2 + xy^2$ $\Rightarrow x^2 - y^2 = xy^2 - x^2y$ $\Rightarrow x^2 - y^2 = xy(y-x)$ $\Rightarrow (x+y)(x-y) = xy(y-x)$ $\therefore x+y = -xy$ $\Rightarrow (1+x)y = -x$ $\Rightarrow y = \frac{-x}{(1+x)}$

Differentiating both sides with respect to x, we obtain

$$y = \frac{-x}{(1+x)}$$
$$\frac{dy}{dx} = -\frac{(1+x)\frac{d}{dx}(x) - x\frac{d}{dx}(1+x)}{(1+x)^2} = -\frac{(1+x) - x}{(1+x)^2} = -\frac{1}{(1+x)^2}$$
Hence, proved

Hence, proved.

Question 15:
If
$$(x-a)^2 + (y-b)^2 = c^2$$
, for some $c > 0$, prove that $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}{\frac{d^2y}{dx^2}}$ is a constant independent of a and b
Solution 15:

It is given that, $(x-a)^2 + (y-b)^2 = c^2$ Differentiating both sides with respect to x, we obtain $\frac{d}{dr}\left[\left(x-a\right)^{2}\right] + \frac{d}{dr}\left[\left(y-b\right)^{2}\right] = \frac{d}{dr}(c^{2})$ $\Rightarrow 2(x-a) \cdot \frac{d}{dx}(x-a) + 2(y-b) \cdot \frac{d}{dx}(y-b) = 0$ $\Rightarrow 2(x-a) \cdot 1 + 2(y-b) \cdot \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = \frac{-(x-a)}{y-b}$(1) $\therefore \frac{d^2 y}{dx^2} = \frac{d}{dx} \left[\frac{-(x-a)}{y-b} \right]$ $= -\frac{\left\lfloor (y-b) \cdot \frac{d}{dx}(x-a) - (x-a) \cdot \frac{d}{dx}(y-b) \right\rfloor}{(y-b)^2}$ $= - \left| \frac{(y-b) - (x-a) \cdot \frac{dy}{dx}}{(y-b)^2} \right|$ $= - \left| \frac{(y-b) - (x-a) \cdot \left\{ \frac{-(x-a)}{y-b} \right\}}{(y-b)^2} \right|$ [using (1)] $= -\left[\frac{(y-b)^{2} + (x+a)^{2}}{(y-b)^{2}}\right]$ $\therefore \left[\frac{1 + \left(\frac{dy}{dx}\right)^2}{\frac{d^2 y}{dx^2}} \right]^{\frac{3}{2}} = \frac{\left[\left(1 + \frac{(x-a)^2}{(y-b)^2}\right) \right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^2}\right]^{\frac{3}{2}}} = \frac{\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}{-\left[\frac{(y-b)^2 + (x-a)^2}{(y-b)^2}\right]^{\frac{3}{2}}}$ $= -\frac{\left[\frac{c^{2}}{(y-b)^{2}}\right]^{\frac{1}{2}}}{\frac{c^{2}}{(y-b)^{3}}} = \frac{\frac{c^{2}}{(y-b)^{3}}}{\frac{c^{2}}{(y-b)^{3}}}$ =-c, which is constant and is independent of a and b

Hence, proved.

Question 16: If $\cos y = x\cos(a+y)$ with $\cos a \neq \pm 1$, prove that $\frac{dy}{dx} = \frac{\cos^2(a+y)}{\sin a}$ **Solution 16:** It is given that, $\cos y = x \cos(a + y)$ $\therefore \frac{d}{dx} = \left[\cos y\right] = \frac{d}{dx} \left[x\cos(a+y)\right]$ $\Rightarrow -\sin y \frac{dy}{dx} = \cos(a+y) \cdot \frac{d}{dx} (x) + x \cdot \frac{d}{dx} [\cos(a+y)]$ $\Rightarrow -\sin y = \frac{dy}{dx} = \cos(a+y) + x \cdot \left[-\sin(a+y)\right] \frac{dy}{dx}$ $\Rightarrow [x\sin(a+y) - \sin y] \frac{dy}{dx} = \cos(a+y)$(1) Since $\cos y = x\cos(a+y), x = \frac{\cos y}{\cos(a+y)}$ Then, equation (1) reduces to $\left|\frac{\cos y}{\cos(a+y)} \cdot \sin(a+y) - \sin y\right| \frac{dy}{dx} = \cos(a+y)$ $\Rightarrow \left[\cos y.\sin(a+y) - \sin y.\cos(a+y)\right] \cdot \frac{dy}{dx} = \cos^2(a+y)$ $\Rightarrow \sin(a+y-y)\frac{dy}{dx} = \cos^2(a+b)$ $\Rightarrow \frac{dy}{dx} = \frac{\cos^2(a+b)}{\sin a}$ Hence, proved.

Question 17:

If $x = a(\cos t + t\sin t)$ and $y = a(\sin t - t\cos t)$, find $\frac{d^2y}{dx^2}$

Chapter 5 Continuity and Differentiability

Solution 17:
It is given that,
$$x = a(\cos t + t\sin t)$$
 and $y = a(\sin t - t\cos t)$
 $\therefore \frac{dx}{dt} = a \cdot \frac{d}{dt}(\cos t + t\sin t)$
 $= a\left[-\sin t + \sin t \cdot \frac{d}{dt}(t) + t \cdot \frac{d}{dt}(\sin t)\right]$
 $= a\left[-\sin t + \sin t + t\cos t\right] = at\cos t$
 $\frac{dy}{dt} = a \cdot \frac{d}{dt}(\sin t - t\cos t)$
 $= a\left[\cos t - \left\{\cos t \cdot \frac{d}{dt}(t) + t \cdot \frac{d}{dt}(\cos t)\right\}\right]$
 $= a\left[\cos t - \left\{\cos t - t\sin t\right\}\right] = at\sin t$
 $\therefore \frac{dy}{dx} = \frac{\left(\frac{dy}{dt}\right)}{\left(\frac{dx}{dt}\right)} = \frac{at\sin t}{at\cos t} = \tan t$
Then, $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dx}(\tan t) = \sec^2 t \cdot \frac{dt}{dx}$
 $= \sec^2 t \cdot \frac{1}{at\cos t} \qquad \left[\frac{dx}{dt} = at\cos t \Rightarrow \frac{dt}{dx} = \frac{1}{at\cos t}\right]$
 $= \frac{\sec^3 t}{at}, \ 0 < t < \frac{\pi}{2}$

Question 18:

If $f(x) = |x|^3$, show that f''(x) exists for all real x, and find it.

Solution 18:

It is known that,
$$|x| = \begin{cases} x, if \ x \ge 0 \\ -x, if \ x < 0 \end{cases}$$

Therefore, when $x \ge 0$, $f(x) = |x|^3 = x^3$
In this case, $f'(x) = 3x^2$ and hence, $f''(x) = 6x$
When $x < 0$, $f(x) = |x|^3 = (-x^3) = x^3$
in this case, $f'(x) = 3x^2$ and hence, $f''(x) = 6x$
Thus, for $f(x) = |x|^3$, $f''^{(x)}$ exists for all real x and is given by,

Chapter 5 Continuity and Differentiability

$$f''(x) = \begin{cases} 6x, & \text{if } x \ge 0\\ -6x, & \text{if } x < 0 \end{cases}$$

Question 19:

Using mathematical induction prove that $\frac{d}{dx}(x^n) = nx^{x-1}$ for all positive integers n.

Solution 19: To prove: $P(n): \frac{d}{dx}(x^n) = nx^{x-1}$ for all positive integers n. For n = 1. $P(1): \frac{d}{dx}(x) = 1 = 1 \cdot x^{1-1}$ $\therefore p(n)$ is true for n=1Let p(k) is true for some positive integer k. That is, $p(k): \frac{d}{dx}(x^k) = kx^{k-1}$ It is to be proved that p(k + 1) is also true. Consider $\frac{d}{dx}(x^{k+1}) = \frac{d}{dx}(x \cdot x^k)$ $x^k \cdot \frac{d}{dx}(x) + x \cdot \frac{d}{dx}(x^k)$ $= x^k \cdot 1 + x \cdot k \cdot x^{k-1}$ $= x^{k} + kx^{k}$ $= (k+1) \cdot x^k$ $= (k+1) \cdot x^{(k+1)-1}$ Thus, P(k + 1) is true whenever P(k) is true. Therefore, by the principal of mathematical induction, the statement P(n) is true for every positive integer n. Hence, proved.

Question 20:

Using the fact that sin(A+B) = sin A cos B + cos A sin B and the differentiation, obtain the sum formula for cosines.

Solution 20: $\sin(A+B) = \sin A \cos B + \cos A \sin B$ Differentiating both sides with respect to x, we obtain $\frac{d}{dx} [\sin(A+B)] = \frac{d}{dx} (\sin A \cos B) + \frac{d}{dx} (\cos A \sin B)$ $\Rightarrow \cos(A+B) \cdot \frac{d}{dx} (A+B) = \cos B \cdot \frac{d}{dx} (\sin A) + \sin A \cdot \frac{d}{dx} (\cos B)$ $+ \sin B \cdot \frac{d}{dx} (\cos A) + \cos A \cdot \frac{d}{dx} (\sin B)$ $\Rightarrow \cos(A+B) \cdot \frac{d}{dx} (A+B) = \cos B \cdot \cos A \frac{d}{dx} + \sin A (-\sin B) \frac{dB}{dx}$ $+ \sin B (-\sin A) \cdot \frac{dA}{dx} + \cos A \cos B \frac{dB}{dx}$ $\Rightarrow \cos(A+B) \left[\frac{dA}{dx} + \frac{dB}{dx} \right] = (\cos A \cos B - \sin A \sin B) \cdot \left[\frac{dA}{dx} + \frac{dB}{dx} \right]$ $\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$

Question 21:

Does there exist a function which is continuous everywhere but not differentiable at exactly two points? Justify your answer.

Solution 21:

Consider f(x) = |x| + |x+1|

Since modulus function is everywhere continuous and sum of two continuous function is also continuous.

Differentiability of f(x): Graph of f(x) shows that f(x) is everywhere derivable except possible at x=0 and x=1

Chapter 5 Continuity and Differentiability

At $\mathbf{x} = \mathbf{0}$, Left hand derivative = $\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{(|x| + |x - 1|) - (1)}{x} = \lim_{x \to 0^{-}} \frac{(-x) - (x - 1) - 1}{x} = \lim_{x \to 0^{-}} \frac{-2x}{x} = -2$ Right hand derivative = $\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(|x| + |x - 1|) - (1)}{x} = \lim_{x \to 0^{+}} \frac{(-x) - (x - 1) - 1}{x} = \lim_{x \to 0^{-}} \frac{0}{x} = 0$ Since *L.H.D* \neq *R.H.D* f(x) is not derivable at x = 0.

At x = 1
L.H.D:

$$\lim_{x \to \Gamma} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to \Gamma} \frac{(|x| + |x - 1|)}{x - 1} = \lim_{x \to \Gamma} \frac{(x) - (x - 1) - 1}{x - 1} = \lim_{x \to \Gamma} \frac{0}{x - 1} = 0$$
R.H.D:

$$\lim_{x \to \Gamma^+} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to \Gamma^+} \frac{(|x| + |x - 1| - 1)}{x - 1} = \lim_{x \to \Gamma^+} \frac{(x) + (x - 1) - 1}{x - 1} = \lim_{x \to \Gamma^+} \frac{2(x - 1)}{x - 1} = 2$$
Since L.H.D \ne R.H.D f(x) is not derivable at x = 1.

 \therefore f(x) is continuous everywhere but not derivable at exactly two points.

Question 22:
If
$$y = \begin{bmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$
, prove that $\frac{dy}{dx} = \begin{bmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{bmatrix}$
Solution 22:

Chapter 5 Continuity and Differentiability

$$y = \begin{bmatrix} f(x) & g(x) & h(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$

$$\Rightarrow y = (mc - nb)f(x) - (lc - na)g(x) + (lb - ma)h(x)$$

Then, $\frac{dy}{dx} = \frac{d}{dx}[(mc - nb)f(x)] - \frac{d}{dx}[(lc - na)g(x)] + \frac{d}{dx}[(lb - ma)h(x)]$

$$= (mc - nb)f'(x) - (lc - na)g'(x) + (lb - ma)h'(x)$$

$$= \begin{bmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{bmatrix}$$

Thus, $\frac{dy}{dx} = \begin{bmatrix} f'(x) & g'(x) & h'(x) \\ l & m & n \\ a & b & c \end{bmatrix}$

Question 23: If $y = e^{a \cos^{-1} x}$, $-1 \le x \le 1$, show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0$

Solution 23:

It is given that, $y = e^{a\cos^{-1}x}$ Taking logarithm on both sides, we obtain $\log y = a\cos^{-1}x\log e$ $\log y = a\cos^{-1}x$ Differentiating both sides with respect to x, we obtain $\frac{1}{y}\frac{dy}{dx} = ax\frac{1}{\sqrt{1-x^2}}$ $= \frac{dy}{dx} = \frac{-ay}{\sqrt{1-x^2}}$ By squaring both the sides, we obtain

Chapter 5 Continuity and Differentiability

$$\left(\frac{dy}{dx}\right)^2 = \frac{a^2 y^2}{1 - x^2}$$
$$\Rightarrow \left(1 - x^2\right) \left(\frac{dy}{dx}\right)^2 = a^2 y^2$$
$$\left(1 - x^2\right) \left(\frac{dy}{dx}\right)^2 = a^2 y^2$$

Again, differentiating both sides with respect to x, we obtain $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$

$$\left(\frac{dy}{dx}\right)^{2} \frac{d}{dx}(1-x^{2}) + (1-x^{2}) \times \frac{d}{dx} \left[\left(\frac{dy}{dx}\right)^{2} \right] = a^{2} \frac{d}{dx} \left(y^{2}\right)$$
$$\Rightarrow \left(\frac{dy}{dx}\right)^{2} (-2x) + (1-x^{2}) \times 2 \frac{dy}{dx} \cdot \frac{d^{2}y}{dx^{2}} = a^{2} \cdot 2y \cdot \frac{dy}{dx}$$
$$\Rightarrow x \frac{dy}{dx} + (1-x^{2}) \frac{d^{2}y}{dx^{2}} = a^{2} \cdot y \qquad \left[\frac{dy}{dx} \neq 0 \right]$$
$$\Rightarrow \left(1-x^{2}\right) \frac{d^{2}y}{dx^{2}} - x \frac{dy}{dx} - a^{2}y = 0$$
Hence, proved.