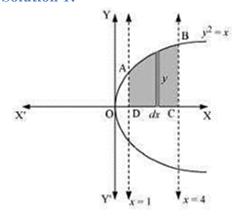
EXERCISE-8.1

Question 1:

Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis in the first quadrant.

Solution 1:



The area of the region bounded by the curve, $y^2 = x$, the lines, x = 1 and x = 4, and the x-axis is the area ABCDA.

Area ABCDA =
$$\int_{1}^{4} \sqrt{x} dx$$

Area of ABCDA =

$$= \left[\frac{x^{\frac{3}{2}}}{3} \right]^{4}$$

$$= \frac{2}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right]$$
$$= \frac{2}{3} [8 - 1]$$
$$= \frac{14}{3} \text{ sq.units}$$

Question 2:

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

Solution 2:



The area of the region bounded by the curve, $y^2 = 9x$, x = 2, and x = 4, and the x-axis is the area ABCDA.

Area ABCDA =
$$\int_{2}^{4} 3\sqrt{x} \, dx$$

$$= 3 \left[\frac{x^{3/2}}{3/2} \right]_{2}^{4}$$

$$= 2 \left[x^{\frac{3}{2}} \right]_{2}^{4}$$

$$= 2 \left[4^{\frac{3}{2}} - 2^{\frac{3}{2}} \right]$$

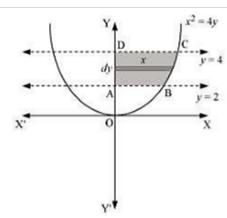
$$= 2 \left[2^{3} - 8^{\frac{1}{2}} \right] = 2 \left[8 - 2\sqrt{2} \right]$$

$$= 16 - 4\sqrt{2} \text{ sq. units}$$

Question 3:

Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Solution 3:



The area of the region bounded by the curve, $x^2 = 4y$, y = 2, and y = 4, and the y-axis is the area ABCDA.

Area of ABCDA =
$$\int_{2}^{4} x dy$$

$$x^{2} = 4y$$

$$x = 2\sqrt{y}$$

$$\int_{2}^{4} x dy = \int_{2}^{4} 2\sqrt{y} dy = 2\int_{2}^{4} \sqrt{y} dy$$

$$= 2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}$$

$$= \frac{4}{3}\left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}}\right]$$

$$=\frac{4}{3}\left[8-2\sqrt{2}\right]$$

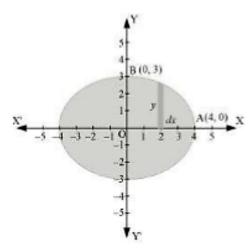
$$= \left(\frac{32 - 8\sqrt{2}}{3}\right) \text{ sq. units}$$

Question 4:

Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$

Solution 4:

The given equation of the ellipse, $\frac{x^2}{16} + \frac{y^2}{9} = 1$, can be represented as



It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = $4 \times$ Area of OABO

Area OABO =
$$\int_0^4 y dx$$

$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$

$$\Rightarrow \frac{y^2}{9} = 1 - \frac{x^2}{16} \Rightarrow y^2 = 9\left(1 - \frac{x^2}{16}\right)$$

$$y = 3\sqrt{1 - \frac{x^2}{16}}$$

Area OABO =
$$\int_0^4 3\sqrt{1 - \frac{x^2}{16}} dx$$

$$= \frac{3}{4} \int_0^4 \sqrt{16 - x^2} \, dx$$

Substitute
$$x = 4\sin\theta$$
, $\theta = \sin^{-1}\frac{x}{4}$

$$dx = 4\cos\theta d\theta$$

when,
$$x = 0$$
 $\theta = 0 \& x = 4$ $\theta = \frac{\pi}{2}$

$$= \frac{3}{4} \int_{0}^{\pi/2} \sqrt{16 - 16 \sin^2 \theta} . 4 \cos \theta d\theta$$

$$=12\int_{0}^{\pi/2}\sqrt{1-\sin^2\theta},\cos\theta d\theta$$

$$= 12 \int_{0}^{\pi/2} \cos^{2}\theta d\theta = 12 \int_{0}^{\pi/2} \frac{1 + \cos 2\theta}{2} d\theta$$

$$= 6 \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta = 6 \left[\theta + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/2}$$

$$= 6 \left[\frac{\pi}{2} + \frac{\sin \pi}{2} - 0 - \frac{\sin \theta}{2} \right] = 6 \left[\frac{\pi}{2} \right] = 3\pi$$

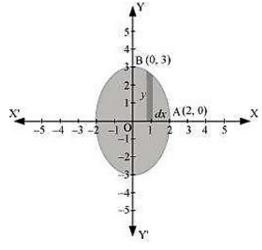
Therefore, area bounded by the ellipse $= 4 \times 3\pi = 12\pi$ sq. units

Question 5:

Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

Solution 5:

The given equation of the ellipse can be represented as



$$\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1$$

$$\frac{y^{2}}{9} = 1 - \frac{x^{2}}{4}$$

$$y^{2} = 9\left(1 - \frac{x^{2}}{4}\right)$$

$$\Rightarrow y = 3\sqrt{1 - \frac{x^{2}}{4}} \qquad \dots(1)$$

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = $4 \times$ Area OABO

$$\therefore$$
 Area of OABO= $\int_0^2 y dx$

$$= \int_0^2 3\sqrt{1 - \frac{x^2}{4}} dx \qquad \text{[Using (1)]}$$
$$= \frac{3}{2} \int_0^2 \sqrt{4 - x^2} dx$$

Substitute
$$x = 2\sin\theta \Rightarrow \theta = \sin^{-1}\left(\frac{x}{2}\right)$$

$$dx = 2\cos\theta d\theta$$

when,
$$x = 0$$
 $\theta = 0 \& x = 2$ $\theta = \frac{\pi}{2}$

$$\therefore \frac{3}{2} \int_{0}^{2} \sqrt{4 - x^{2}} dx = \frac{3}{2} \int_{0}^{\pi/2} \sqrt{4 - 4\sin^{2}\theta} \cdot 2\cos\theta d\theta$$

$$=3\int_{0}^{\pi/2}\sqrt{4-4\sin^2\theta}.\cos\theta d\theta=6\int_{0}^{\pi/2}\sqrt{1-\sin^2\theta}\cos\theta d\theta$$

$$=6\int_{0}^{\pi/2}\cos 2\theta d\theta =6\int_{0}^{\pi/2}\frac{1+\cos 2\theta}{2}d\theta$$

$$= \frac{6}{2} \int_{0}^{\pi/2} (1 + \cos 2\theta) d\theta = 3 \left[0 + \frac{\sin 2\theta}{2} \right]_{0}^{\pi/2}$$

$$= 3 \left[\frac{\pi}{2} + \frac{\sin \pi}{2} - 0 \right] = 3 \times \frac{\pi}{2} = \frac{3\pi}{2}$$

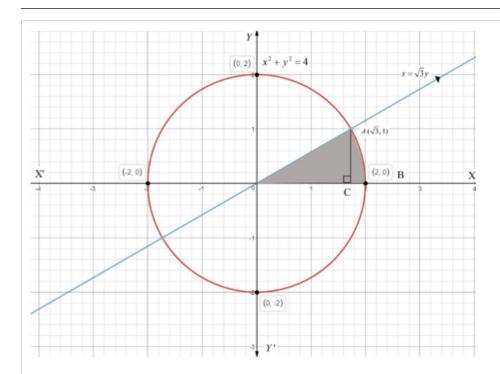
Therefore, area bounded by the ellipse = $4 \times \frac{3\pi}{2} = 6\pi$ sq. units

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x = \sqrt{3}y$ and the circle $x^2 + y^2 = 4$

Solution 6:

The area of the region bounded by the circle, $x^2 + y^2 = 4$, $x = \sqrt{3}y$, and the x-axis is the area OAB.



Substituting $x = \sqrt{3}y$ in $x^2 + y^2 = 4$, for finding the point of intersection.

$$\therefore (\sqrt{3}y) + y^2 = 4 \Rightarrow y^2 = 1 \Rightarrow y = \pm 1, x = \pm \sqrt{3}$$

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3},1)$.

Area OABO = Area \triangle OCA + Area ACBA

Area of OAC =
$$\frac{1}{2} \times OC \times AC = \frac{1}{2} \times \sqrt{3} \times 1 = \frac{\sqrt{3}}{2}$$
 ...(1)

Area of ABCA =
$$\int_{\sqrt{3}}^{2} y dx$$

$$\int_{2}^{2} y dx = \int_{\sqrt{3}}^{2} \sqrt{4 - x^2} dx$$

$$\int_{\sqrt{3}}^{2} x = 2\sin\theta \quad \theta = \sin^{-1}\left(\frac{x}{2}\right)$$

when
$$x = 2$$
 $\theta = \frac{\pi}{2}$

$$x = \sqrt{3} \quad \theta = \frac{\pi}{3}$$

$$\therefore \int_{\sqrt{3}}^{2} \sqrt{4 - x} \, dx = \int_{\pi/3}^{\pi/2} \sqrt{4 - 4\sin^{2}\theta} (2\cos\theta) d\theta$$

$$= 4 \int_{\pi/3}^{\pi/2} \cos^{2}\theta d\theta = 4 \int_{\pi/3}^{\pi/2} 1 + \frac{\cos 2\theta}{2} d\theta$$

$$= 2 \int_{\pi/3}^{\pi/2} (1 + \cos 2\theta) d\theta = 2 \left[\theta + \frac{\sin 2\theta}{2} \right]_{\pi/3}^{\pi/2}$$

$$= 2 \left[\frac{\pi}{2} + \frac{1}{2} \sin \pi - \frac{\pi}{3} - \frac{1}{2} \sin \frac{2\pi}{3} \right]$$

$$= 2 \left[\frac{\pi}{2} - \frac{\pi}{3} - \frac{1}{2} \times \frac{\sqrt{3}}{2} \right] = 2 \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right] \qquad \dots(2)$$

From (1) & (2)

Area of OAB =
$$\frac{\sqrt{3}}{2} + 2 \left[\frac{\pi}{6} - \frac{\sqrt{3}}{4} \right] = \frac{\pi}{3}$$

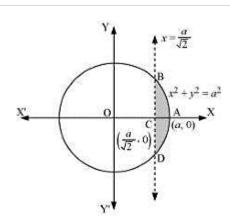
Therefore, area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^2 + y^2 = 4$ in the first quadrant $= \frac{\pi}{3}$ sq.units

Question 7:

Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$.

Solution 7:

The area of the smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line $x = \frac{a}{\sqrt{2}}$, is the area ABCDA.



It can be observed that the area ABCDA is symmetrical about x-axis.

∴ Area ABCDA = 2× Area ABCA

Area of ABCA =
$$\int_{\frac{a}{\sqrt{2}}}^{a} y dx$$

$$\int_{a/\sqrt{2}}^{a} \sqrt{a^2 - x^2} dx$$

 $x = a \sin \theta$ $dx = a \cos \theta d\theta$

$$x = \frac{a}{\sqrt{2}} \quad \theta = \sin^{-1}\left(\frac{x}{a}\right) = \sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$

$$x = a$$
, $\theta = \sin^{-1}\left(\frac{a}{a}\right) = \frac{\pi}{2}$

$$\therefore \int_{a/\sqrt{2}}^{a} \sqrt{a^2 - x^2} dx = \int_{\pi/4}^{\pi/2} \sqrt{a^2 - a^2 \sin^2 \theta} \cdot (a \cos \theta) d\theta$$

$$\Rightarrow a^2 \int_{\pi/4}^{\pi/2} \cos^2 \theta = a^2 \int_{\pi/4}^{\pi/2} \frac{1 + \cos 2\theta}{2} d\theta$$

$$=\frac{a^2}{2}\left[\theta+\frac{\sin 2\theta}{2}\right]_{\pi/4}^{\pi/2}$$

$$= \frac{a^2}{2} \left[\frac{\pi}{2} + \frac{\sin \pi}{2} - \frac{\pi}{4} - \frac{\sin \frac{\pi}{2}}{2} \right]$$

$$=\frac{a^2}{2}\left[\frac{\pi}{4}-\frac{1}{2}\right]$$

$$=\frac{a^2}{4}\left[\frac{\pi}{2}-1\right]$$

$$\Rightarrow Area \ ABCD = 2\left[\frac{a^2}{4}\left(\frac{\pi}{2} - 1\right)\right] = \frac{a^2}{2}\left(\frac{\pi}{2} - 1\right)$$

Therefore, the area of smaller part of the circle, $x^2 + y^2 = a^2$, cut off by the line $x = \frac{a}{\sqrt{2}}$, is

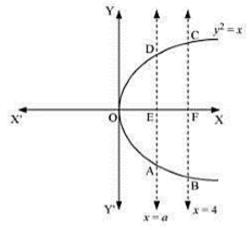
$$\frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$
 sq. units.

Question 8:

The area between $x = y^2$ and x = 4 is divided into two equal parts by the line x = a, find the value of a.

Solution 8:

The line x = a, divides the area bounded by the parabola $x = y^2$ and x = 4 into two equal parts. \therefore Area OADO = Area ABCDA



It can be observed that the given area is symmetrical about x-axis.

Area of OEDO = $\frac{1}{2}$ Area of OADO

Area of EFCDE = $\frac{1}{2}$ Area of ABCDA

Therefore, Area OEDO = Area EFCDE

Area OEDO =
$$\int_0^a y dx$$

$$= \int_0^a \sqrt{x} dx$$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a}$$

$$= \frac{2}{3}(a)^{\frac{3}{2}} \qquad \dots (1)$$

Area of EFCDE = $\int_{0}^{4} y \, dx = \int_{0}^{4} \sqrt{x} \, dx$

$$= \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{a}^{4}$$

$$= \frac{2}{3}\left[4^{\frac{3}{2}} - a^{\frac{3}{2}}\right]$$

$$= \frac{2}{3}\left[8 - a^{\frac{3}{2}}\right] \qquad \dots(2)$$

From (1) and (2), we obtain

$$\frac{2}{3}(a)^{\frac{3}{2}} = \frac{2}{3} \left[8 - (a)^{\frac{3}{2}} \right]$$

$$\Rightarrow 2.(a)^{\frac{3}{2}} = 8$$
$$\Rightarrow (a)^{\frac{3}{2}} = 4$$

$$\Rightarrow (a)^{\frac{3}{2}} = 4$$

$$\Rightarrow a = (4)^{\frac{2}{3}}$$

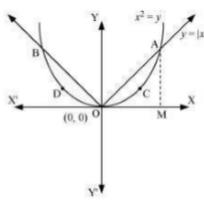
Therefore, the value of a is $(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y = x^2$ and y = |x|.

Solution 9:

The area bounded by the parabola, $x^2 = y$, and the line, y = |x|, can be represented as



The given area is symmetrical about y-axis.

∴ Area OACO = Area ODBO

The point of intersection of parabola $x^2 = y$ and line y = x is A (1, 1).

Area of OACO = Area \triangle OAM - Area OMACO

∴ Area of
$$\triangle OAM = \frac{1}{2} \times OM \times AM = \frac{1}{2} \times 1 \times 1 = \frac{1}{2}$$

Area of OMACO =
$$\int_0^1 y dx = \int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}$$

$$\Rightarrow$$
 Area of OACO = Area of \triangle OAM - Area of OMACO

$$= \frac{1}{2} - \frac{1}{3} \\
= \frac{1}{6}$$

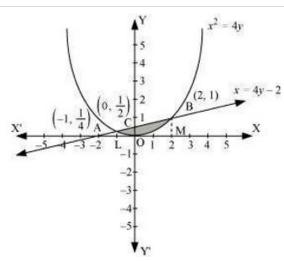
Therefore, required area = $2\left\lceil \frac{1}{6} \right\rceil = \frac{1}{3}$ sq. units.

Question 10:

Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

Solution 10:

The area bounded by the curve, $x^2 = 4y$, and line, x = 4y - 2, is represented by the shaded area OBAO.



Let A and B be the points of intersection of the line and parabola.

Substituting x = 4y - 2 in $x^2 = 4y$

$$(4y-2)^2 = 4y$$

$$16y^2 - 16y + 4 = 4y$$

$$16y^2 - 20y + 4 = 0$$

$$4y^2 - 5y + 1 = 0$$

$$(4y-1)(y-1)=0$$

$$y = \frac{1}{4}, x = -1$$

$$y = 1, x = 2$$

Coordinates of point A are $\left(-1, \frac{1}{4}\right)$.

Coordinates of point B are (2, 1).

We draw AL and BM perpendicular to x-axis.

It can be observed that,

Area OBAO = Area OBCO + Area OACO ... (1)

Area OMBCO = Area under the line x = 4y - 2 between x = 0 and x = 2

Area OMBCO =
$$\int_{0}^{2} \frac{x+2}{4} dx$$

Area OMBO = Area under the curve $x^2 = 4y$ between x = 0 and x = 2

Area OMBO =
$$\int_{0}^{2} \frac{x^2}{4} dx$$

Then, Area OBCO = Area OMBCO - Area OMBO

$$= \int_0^2 \frac{x+2}{4} dx - \int_0^2 \frac{x^2}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^2}{2} + 2x \right]_0^2 - \frac{1}{4} \left[\frac{x^3}{3} \right]_0^2$$

$$= \frac{1}{4} [2+4] - \frac{1}{4} \left[\frac{8}{3} \right]$$

$$=\frac{3}{2} - \frac{2}{3}$$
$$=\frac{5}{6}$$

Area OLACO = Area under the line x = 4y - 2 between x = -1 and x = 0

Area OLACO =
$$\int_{-1}^{0} \frac{x+2}{4} dx$$

Area OLAO = Area under the curve $x^2 = 4y$ between x = -1 and x = -1

Area OMBO =
$$\int_{0}^{2} \frac{x^2}{4} dx$$

Area OACO = Area OLACO - Area OLAO

$$= \int_{-1}^{0} \frac{x+2}{4} dx - \int_{-1}^{0} \frac{x^{2}}{4} dx$$

$$= \frac{1}{4} \left[\frac{x^{2}}{2} + 2x \right]_{-1}^{0} - \frac{1}{4} \left[\frac{x^{3}}{3} \right]_{-1}^{0}$$

$$= \frac{1}{4} \left[\frac{0}{2} + 0 - \frac{(-1)^{2}}{2} - 2(-1) \right] - \frac{1}{4} \left[\frac{0^{3}}{3} - \frac{(-1)^{3}}{3} \right]$$

$$= -\frac{1}{4} \left[\frac{(-1)}{2} + 2(-1) \right] - \left[-\frac{1}{4} \left(\frac{(-1)^3}{3} \right) \right]$$

$$= -\frac{1}{4} \left[\frac{1}{2} - 2 \right] - \frac{1}{12}$$

$$= \frac{1}{2} - \frac{1}{8} - \frac{1}{12}$$

$$= \frac{7}{24}$$

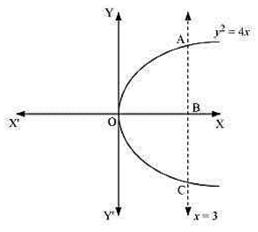
Therefore, required area = $\left(\frac{5}{6} + \frac{7}{24}\right) = \frac{9}{8}$ sq. units

Question 11:

Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

Solution 11:

The region bounded by the parabola, $y^2 = 4x$, and the line, x = 3, is the area OACO



The area OACO is symmetrical about x-axis.

 \therefore Area of OACO = 2 (Area of OABO)

Area OACO =
$$2\left[\int_0^3 y dx\right]$$

$$= 2 \left[\int_0^3 2\sqrt{x} dx \right]$$

$$= 4 \left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_0^3$$

$$= \frac{8}{3} \left[(3)^{\frac{3}{2}} \right]$$

$$= 8\sqrt{3}$$

Therefore, the required area is $8\sqrt{3}$ sq. units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^2 + y^2 = 4$ and the lines x = 0 and x = 2 is

Α. π

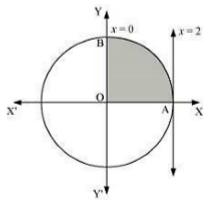
B. $\frac{\pi}{2}$

C. $\frac{\pi}{3}$

D. $\frac{\pi}{4}$

Solution 12:

The area bounded by the circle and the lines, x = 0 and x = 2, in the first quadrant is represented as



$$\therefore \text{ Area OAB} = \int_0^2 y dx$$

$$=\int_0^2 \sqrt{4-x^2} \, dx$$

$$= \left[\frac{x}{2}\sqrt{4-x^2} + \frac{4}{2}\sin^{-1}\frac{x}{2}\right]_0^2$$

$$=2\left(\frac{\pi}{2}\right)$$

 $=\pi$ units

Alternate Solution:

Area OABO = $\frac{1}{2}$ Area of circle

Radius = 2

Area OABO =
$$\frac{1}{4} \times \pi \times 2^2 = \pi$$
 sq. units

Thus, the correct answer is A.

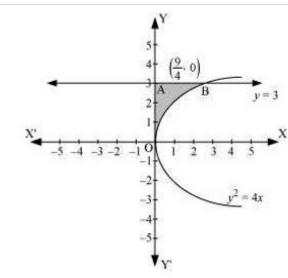
Question 13:

Area of the region bounded by the curve $y^2 = 4x$, y-axis and the line y = 3 is

- A. 2
- B. $\frac{9}{4}$
- C. $\frac{9}{3}$
- D. $\frac{9}{2}$

Solution 13:

The area bounded by the curve $y^2 = 4x$, y-axis, and y = 3 is represented as



$$\therefore \text{ Area OABO} = \int_0^3 x dy$$

$$=\int_0^3 \frac{y^2}{4} \, dy$$

$$= \frac{1}{4} \left[\frac{y^3}{3} \right]_0^3$$

$$= \frac{1}{12} (27)$$

$$=\frac{1}{12}(27)$$

$$=\frac{9}{4}$$
 sq. units

Thus, the correct answer is B.

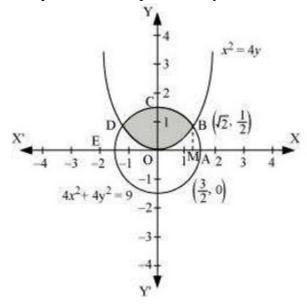
EXERCISE-8.2

Question 1:

Find the area of the circle $4x^2 + 4y^2 = 9$ which is interior to the parabola $x^2 = 4y$

Solution 1:

The required area is represented by the shaded area OBCDO.



Solving the given equation of circle, $4x^2 + 4y^2 = 9$, and parabola, $x^2 = 4y$,

$$4(4y) + 4y^2 = 9$$

$$4y^2 + 16y - 9 = 0$$

$$y = \frac{-16 \pm \sqrt{16^2 - 4 \cdot 4 \cdot (-9)}}{2 \cdot 4}$$

$$y = \frac{1}{2}$$
 or -4.5

The value of y cannot be negative as $x^2 = 4y$.

We obtain the point of intersection as B $\left(\sqrt{2}, \frac{1}{2}\right)$ and D $\left(-\sqrt{2}, \frac{1}{2}\right)$.

It can be observed that the required area is symmetrical about y-axis.

∴ Area OBCDO = 2 × Area OBCO

We draw BM perpendicular to OA.

Therefore, the coordinates of M are $(\sqrt{2},0)$.

Therefore, Area OBCO = Area OMBCO - Area OMBO

Area OMBCO = Area under the circle $4x^2 + 4y^2 = 9$ between x = 0 & $x = \sqrt{2}$

Area OMBCO =
$$\int_{0}^{\sqrt{2}} \sqrt{\frac{9-4x^2}{4}} dx$$

$$= \int_{0}^{\sqrt{2}} \sqrt{\frac{9}{4} - x^2} \, dx$$

substitute $x = \frac{3}{2}\sin\theta$, $dx = \frac{3}{2}\cos\theta d\theta$

$$\int \sqrt{\frac{9}{4} - \frac{9}{4}\sin^2\theta} \cdot \frac{3}{2}\cos\theta d\theta$$

$$= \frac{9}{4} \int \sqrt{1 - \sin^2 \theta} \cos \theta d\theta = \frac{9}{4} \int \cos^2 \theta d\theta$$

$$=\frac{9}{4}\int \frac{1+\cos 2\theta}{2}d\theta$$

$$=\frac{9}{4}\int \frac{1}{2} + \frac{\cos 2\theta}{2} d\theta$$

$$=\frac{9}{8}\left[0+\frac{\sin 2\theta}{2}\right]$$

$$= \frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{\cancel{2} \cdot \sin \theta \cos \theta}{\cancel{2}} \right]$$

$$= \frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{2x}{3} \sqrt{1 - \frac{4x^2}{9}} \right]$$

$$= \frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{2x}{9} \sqrt{9 - 4x^2} \right]$$

Applying the limits

$$= \frac{9}{8} \left[\sin^{-1} \frac{2x}{3} + \frac{2x}{9} \sqrt{9 - 4x^2} \right]_0^{\sqrt{2}}$$

$$=\frac{9}{8}\left[\sin^{-1}\left(\frac{2\sqrt{2}}{3}\right)+\frac{2\sqrt{2}}{9}\right]$$

Area OMBCO =
$$\frac{1}{4} \left[\sqrt{2} + \frac{9}{2} \sin^{-1} \frac{2\sqrt{2}}{3} \right]$$
 ...(1)

Area OMBCO = Area under $x^2 = 4y$ between x = 0 and $x = \sqrt{2}$

Area OMBO =
$$\int_{0}^{\sqrt{2}} \frac{x^2}{4} dx$$

Area OMBO =
$$\frac{1}{4} \left[\frac{x^3}{3} \right]_0^{\sqrt{2}}$$

Area OMBO =
$$\frac{1}{12} \left[2\sqrt{2} \right] = \frac{\sqrt{2}}{6}$$
 ...(2)

From (1) and (2)

$$= \frac{\sqrt{2}}{4} + \frac{9}{8}\sin^{-1}\frac{2\sqrt{2}}{3} - \frac{\sqrt{2}}{6}$$

$$= \frac{\sqrt{2}}{12} + \frac{9}{8}\sin^{-1}\frac{2\sqrt{2}}{3}$$

$$= \frac{1}{2}\left(\frac{\sqrt{2}}{6} + \frac{9}{4}\sin^{-1}\frac{2\sqrt{2}}{3}\right)$$

Therefore, the required area OBCDO is

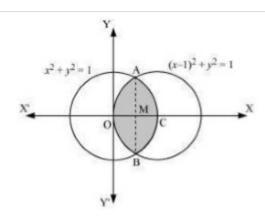
$$\left(2 \times \frac{1}{2} \left\lceil \frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right\rceil \right) = \left\lceil \frac{\sqrt{2}}{6} + \frac{9}{4} \sin^{-1} \frac{2\sqrt{2}}{3} \right\rceil \text{sq. units}$$

Question 2:

Find the area bounded by curves $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$

Solution 2:

The area bounded by the curves, $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$, is represented by the shaded area as



On solving the equations, $(x-1)^2 + y^2 = 1$ and $x^2 + y^2 = 1$,

$$(x-1)^2 + 1 - x^2 = 1$$

$$-2x + 1 = 0$$

$$x = 1/2$$

$$y^2 = 1 - x^2 = 1 - \frac{1}{4} = \frac{3}{4}$$

we obtain the point of intersection as A $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and B $\left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$

It can be observed that the required area is symmetrical about x-axis.

∴ Area OBCAO = $2 \times$ Area OCAO

We join AB, which intersects OC at M, such that AM is perpendicular to OC.

The coordinates of M are $\left(\frac{1}{2},0\right)$

$$\begin{split} &= \left[\int_{0}^{\frac{1}{2}} \sqrt{1 - (x - 1)^{2}} \, dx + \int_{\frac{1}{2}}^{1} \sqrt{1 - x^{2}} \, dx \right] \\ &= \left[\frac{x - 1}{2} \sqrt{1 - (x - 1)^{2}} + \frac{1}{2} \sin^{-1} (x - 1) \right]_{0}^{\frac{1}{2}} + \left[\frac{x}{2} \sqrt{1 - x^{2}} + \frac{1}{2} \sin^{-1} x \right]_{\frac{1}{2}}^{1} \\ &= \left[-\frac{1}{4} \sqrt{1 - \left(-\frac{1}{2} \right)^{2}} + \frac{1}{2} \sin^{-1} \left(\frac{1}{2} - 1 \right) - \frac{1}{2} \sin^{-1} (-1) \right] + \left[\frac{1}{2} \sin^{-1} (+1) - \frac{1}{4} \sqrt{1 - \left(+\frac{1}{2} \right)^{2}} - \frac{1}{2} \sin^{-1} \left(\frac{1}{2} \right) \right] \\ &= \left[-\frac{\sqrt{3}}{8} + \frac{1}{2} \left(-\frac{\pi}{6} \right) - \frac{1}{2} \left(-\frac{\pi}{2} \right) \right] + \left[\frac{1}{2} \left(\frac{\pi}{2} \right) - \frac{\sqrt{3}}{8} - \frac{1}{2} \left(\frac{\pi}{6} \right) \right] \end{split}$$

$$= \left[-\frac{\sqrt{3}}{4} - \frac{\pi}{12} + \frac{\pi}{4} + \frac{\pi}{4} - \frac{\pi}{12} \right]$$

$$= \left[-\frac{\sqrt{3}}{4} - \frac{\pi}{6} + \frac{\pi}{2} \right]$$

$$= \left[\frac{2\pi}{6} - \frac{\sqrt{3}}{4} \right]$$

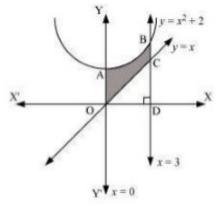
Therefore, required area OBCAO =
$$2 \times \left(\frac{2\pi}{6} - \frac{\sqrt{3}}{4}\right) = \left(\frac{2\pi}{3} - \frac{\sqrt{3}}{2}\right)$$
 sq. units

Question 3:

Find the area of the region bounded by the curves $y = x^2 + 2$, y = x, x = 0 and x = 3.

Solution 3:

The area bounded by the curves, $y = x^2 + 2$, y = x, x = 0, and x = 3, is represented by the shaded area OCBAO as



Then, Area OCBAO = Area ODBAO - Area ODCO

$$= \int_0^3 (x^2 + 2) dx - \int_0^3 x dx$$

$$= \left[\frac{x^3}{3} + 2x\right]_0^3 - \left[\frac{x^2}{2}\right]_0^3$$

$$= [9+6] - \left[\frac{9}{2}\right]$$
$$= 15 - \frac{9}{2}$$
$$= \frac{21}{2} \text{ sq. units}$$

Question 4:

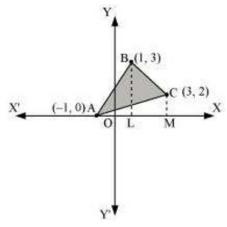
Using integration find the area of the region bounded by the triangle whose vertices are (-1, 0), (1, 3) and (3, 2).

Solution 4:

BL and CM are drawn perpendicular to x-axis.

It can be observed in the following figure that,

Area (\triangle ACB) = Area (ALBA) + Area (BLMCB) - Area (AMCA) ...(1)



Equation of line segment AB is

$$y - 0 = \frac{3 - 0}{1 + 1} (x + 1)$$

$$y = \frac{3}{2}(x+1)$$

$$\therefore \text{Area}(\text{ALBA}) = \int_{-1}^{1} \frac{3}{2} (x+1) dx = \frac{3}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{1} = \frac{3}{2} \left[\frac{1}{2} + 1 - \frac{1}{2} + 1 \right] = 3 \text{ sq. units}$$

Equation of line segment BC is

$$y-3 = \frac{2-3}{3-1}(x-1)$$
$$y = \frac{1}{2}(-x+7)$$

$$\therefore \text{Area} \left(\text{BLMCB} \right) = \int_{1}^{3} \frac{1}{2} \left(-x + 7 \right) dx = \frac{1}{2} \left[-\frac{x^{2}}{2} + 7x \right]_{1}^{3} = \frac{1}{2} \left[-\frac{9}{2} + 21 + \frac{1}{2} - 7 \right] = 5 \text{ sq. units}$$

Equation of line segment AC is

$$y - 0 = \frac{2 - 0}{3 + 1} (x + 1)$$

$$y = \frac{1}{2}(x+1)$$

$$\therefore \text{Area}(\text{AMCA}) = \frac{1}{2} \int_{-1}^{3} (x+1) dx = \frac{1}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{3} = \frac{1}{2} \left[\frac{9}{2} + 3 - \frac{1}{2} + 1 \right] = 4 \text{ sq. units}$$

Therefore, from equation (1), we obtain

Area
$$(\triangle ABC) = (3+5-4) = 4$$
 sq. units

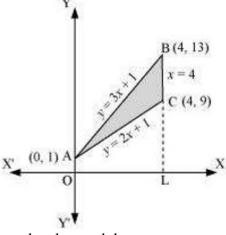
Ouestion 5:

Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Solution 5:

The equations of sides of the triangle are y = 2x + 1, y = 3x + 1 and x = 4.

On solving these equations, we obtain the vertices of triangle as A(0, 1), B(4, 13), and C (4, 9).



It can be observed that,

Area (\triangle ACB) = Area (OLBAO) – Area (OLCAO)

$$= \int_0^4 (3x+1) dx - \int_0^4 (2x+1) dx$$

$$= \left[\frac{3x^2}{2} + x \right]_0^4 - \left[\frac{2x^2}{2} + x \right]_0^4$$

$$= (24+4) - (16+4)$$

$$= 28 - 20$$

$$= 8 \text{ sq. units}$$

Ouestion 6:

Smaller area enclosed by the circle $x^2 + y^2 = 4$ and the line x + y = 2 is

A.
$$2(\pi-2)$$

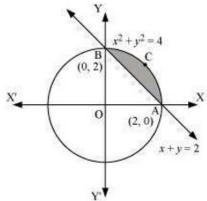
B.
$$\pi - 2$$

C.
$$2\pi - 1$$

D.
$$2(\pi + 2)$$

Solution 6:

The smaller area enclosed by the circle, $x^2 + y^2 = 4$, and the line, x + y = 2, is represented by the shaded area ACBA as



It can be observed that,

Area ACBA = Area OACBO – Area (ΔOAB)

$$= \int_0^2 \sqrt{4 - x^2} dx - \int_0^2 (2 - x) dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2 - \left[2x - \frac{x^2}{2} \right]_0^2$$

$$= \left[2 \cdot \frac{\pi}{2} \right] - \left[4 - 2 \right]$$

$$= (\pi - 2) \text{ sq. units}$$

Thus, the correct answer is B.

Question 7:

Area lying between the curves $y^2 = 4x$ and y = 2x is

$$A.\frac{2}{3}$$

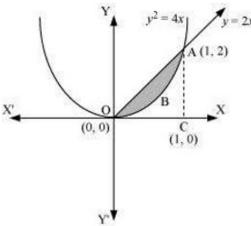
C.
$$\frac{1}{4}$$

B.
$$\frac{1}{3}$$

D.
$$\frac{3}{4}$$

Solution 7:

The area lying between the curves, $y^2 = 4x$ and y = 2x, is represented by the shaded area OBAO as



The points of intersection of these curves are O(0, 0) and A(1, 2).

We draw AC perpendicular to x-axis such that the coordinates of C are (1, 0).

∴ Area OBAO = Area (
$$\triangle$$
OCA) – Area (OCABO)

$$= \int_0^1 2x dx - \int_0^1 2\sqrt{x} dx$$

$$=2\left[\frac{x^{2}}{2}\right]_{0}^{1}-2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1}$$

$$= \left| 1 - \frac{4}{3} \right|$$

$$=\left|-\frac{1}{3}\right|$$

$$=\frac{1}{3}$$
 sq. units

Thus, the correct answer is B.

Miscellaneous Exercise

Question 1:

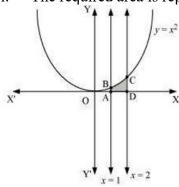
Find the area under the given curves and given lines:

(i)
$$y = x^2, x = 1, x = 2 \text{ and x-axis}$$

(ii)
$$y = x^4, x = 1, x = 5 \text{ and x-axis}$$

Solution 1:

i. The required area is represented by the shaded area ADCBA as



Area ADCBA =
$$\int_{1}^{2} y dx$$

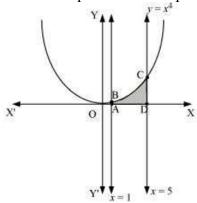
$$= \int_{1}^{2} x^{2} dx$$

$$= \left[\frac{x^3}{3}\right]_1^2$$

$$=\frac{8}{3}-\frac{1}{3}$$

$$=\frac{7}{3}$$
 sq.units

ii. The required area is represented by the shaded area ADCBA as



Area of ADCBA =
$$\int_{1}^{5} x^{4} dx$$

$$= \left[\frac{x^5}{5}\right]_1^5$$

$$=\frac{(5)^5}{5}-\frac{1}{5}$$

$$=(5)^4-\frac{1}{5}$$

$$=625-\frac{1}{5}$$

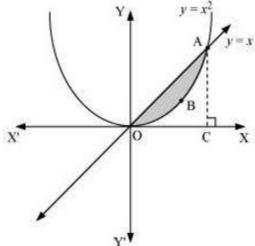
= 624.8 sq.units

Question 2:

Find the area between the curves y = x and $y = x^2$

Solution 2:

The required area is represented by the shaded area OBAO as



The points of intersection of the curves, y = x and $y = x^2$, is A (1, 1).

We draw AC perpendicular to x-axis.

∴ Area (OBAO) = Area (
$$\triangle$$
OCA) – Area (OCABO) ... (1)

$$= \int_0^1 x dx - \int_0^1 x^2 dx$$

$$= \left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1$$

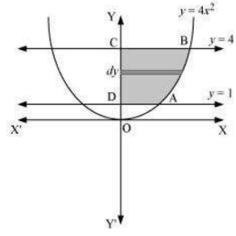
$$= \frac{1}{2} - \frac{1}{3}$$
$$= \frac{1}{6} \text{ sq.units}$$

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y = 4x^2$, x = 0, y = 1 and y = 4

Solution 3:

The area in the first quadrant bounded by $y = 4x^2$, x = 0, y = 1, and y = 4 is represented by the shaded area ABCDA as



Area ABCDA =
$$\int_{1}^{4} x dy$$

$$= \int_{1}^{4} \frac{1}{2} \sqrt{y} dy$$

$$=\frac{1}{2} \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]^{4}$$

$$=\frac{1}{3}\bigg[(4)^{\frac{3}{2}}-1\bigg]$$

$$= \frac{1}{3}[8-1]$$
$$= \frac{7}{3} \text{ sq.units}$$

Question 4:

Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$

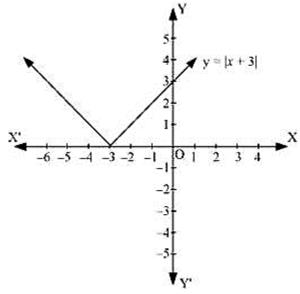
Solution 4:

The given equation is y = |x+3|

The corresponding values of x and y are given in the following table.

x	- 6	- 5	- 4	- 3	- 2	- 1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of y = |x+3| as follows.



It is known that, $(x+3) \le 0$ for $-6 \le x \le -3$ and $(x+3) \ge 0$ for $-3 \le x \le 0$

$$\therefore \int_{-6}^{0} \left| (x+3) \right| dx = -\int_{-6}^{-3} (x+3) dx + \int_{-3}^{0} (x+3) dx$$
$$= -\left[\frac{x^{2}}{2} + 3x \right]_{-6}^{-3} + \left[\frac{x^{2}}{2} + 3x \right]_{-3}^{0}$$

$$= -\left[\left(\frac{(-3)^2}{2} + 3(-3) \right) - \left(\frac{(-6)^2}{2} + 3(-6) \right) \right] + \left[0 - \left(\frac{(-3)^2}{2} + 3(-3) \right) \right]$$

$$= -\left[-\frac{9}{2} \right] - \left[-\frac{9}{2} \right]$$

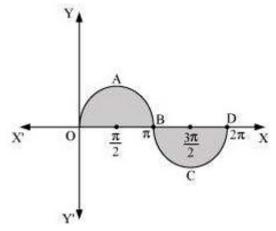
$$= 9$$

Question 5:

Find the area bounded by the curve $y = \sin x$ between x = 0 and $x = 2\pi$

Solution 5:

The graph of $y = \sin x$ can be drawn as



∴ Required area = Area OABO + Area BCDB

$$= \int_0^{\pi} \sin x dx + \left| \int_{\pi}^{2\pi} \sin x dx \right|$$

$$= \left[-\cos x \right]_0^{\pi} + \left| \left[-\cos x \right]_{\pi}^{2\pi} \right|$$

$$= \left[-\cos \pi + \cos 0 \right] + \left| -\cos 2\pi + \cos \pi \right|$$

$$= 1 + 1 + \left| \left(-1 - 1 \right) \right|$$

$$= 2 + \left| -2 \right|$$

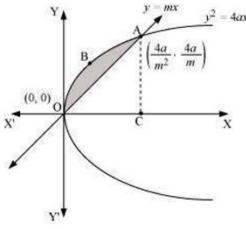
$$= 2 + 2 = 4 \text{ sq. units}$$

Question 6:

Find the area enclosed between the parabola $y^2 = 4ax$ and the line y = mx.

Solution 6:

The area enclosed between the parabola, $y^2 = 4ax$ and the line y = mx, is represented by the shaded area OABO as



$$y^2 = 4ax$$
, $y = mx$

$$m^2x^2 = 4ax$$

$$m^2x^2 - 4ax = 0$$

$$x(m^2x - 4a) = 0$$

$$x = 0 \text{ or } x = 4/m^2$$

The points of intersection of both the curves are (0, 0) and $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$.

We draw AC perpendicular to x-axis.

∴ Area OABO = Area OCABO – Area (
$$\triangle$$
OCA)

$$= \int_0^{\frac{4a}{m^2}} 2\sqrt{ax} dx - \int_0^{\frac{4a}{m^2}} mx dx$$

$$=2\sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{4a}{m^{2}}}-m\left[\frac{x^{2}}{2}\right]_{0}^{\frac{4a}{m^{2}}}$$

$$=\frac{4}{3}\sqrt{a}\left(\frac{4a}{m^2}\right)^{\frac{3}{2}}-\frac{m}{2}\left[\left(\frac{4a}{m^2}\right)^2\right]$$

$$=\frac{32a^2}{3m^3}-\frac{m}{2}\left(\frac{16a^2}{m^3}\right)$$

$$=\frac{32a^2}{3m^3}-\frac{8a^2}{m^3}$$

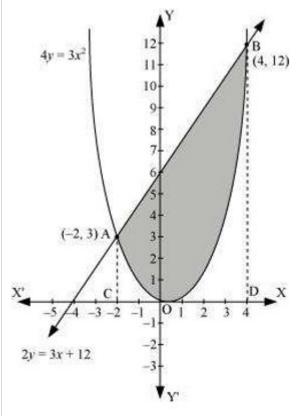
$$= \frac{8a^2}{3m^3}$$
 sq.units

Question 7:

Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.

Solution 7:

The area enclosed between the parabola $4y = 3x^2$ and the line 2y = 3x + 12, is represented by the shaded area OBAO as



From the given equation of line, we have

$$2y = 3x + 12$$

$$y = \frac{3x + 12}{2}$$
 ...(1)

From the given equation of parabola, we have

$$4y = 3x^{2}$$

$$4\left(\frac{3x+12}{2}\right) = 3x^{2} \qquad [From (1)]$$

$$6x + 24 = 3x^{2}$$

$$x^{2} - 2x - 8 = 0$$

$$(x-4)(x+2) = 0$$

$$x = 4, x = -2$$

The points of intersection of the given curves are A (-2, 3) and (4, 12).

We draw AC and BD perpendicular to x-axis.

$$= \int_{-2}^{4} \frac{1}{2} (3x+12) dx - \int_{-2}^{4} \frac{3x^{2}}{4} dx$$

$$= \frac{1}{2} \left[\frac{3x^{2}}{2} + 12x \right]_{-2}^{4} - \frac{3}{4} \left[\frac{x^{3}}{3} \right]_{-2}^{4}$$

$$= \frac{1}{2} \left[24 + 48 - 6 + 24 \right] - \frac{1}{4} \left[64 + 8 \right]$$

$$= \frac{1}{2} \left[90 \right] - \frac{1}{4} \left[72 \right]$$

$$= 45 - 18$$

$$= 27 \text{ sq. units}$$

Question 8:

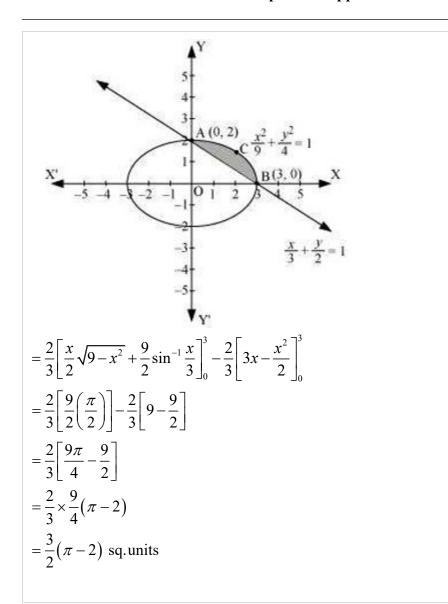
Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$

Solution 8:

The area of the smaller region bounded by the ellipse, $\frac{x^2}{9} + \frac{y^2}{4} = 1$, and the line, $\frac{x}{3} + \frac{y}{2} = 1$, is

represented by the shaded region BCAB as

$$= \int_0^3 2\sqrt{1 - \frac{x^2}{9}} dx - \int_0^3 2\left(1 - \frac{x}{3}\right) dx$$
$$= \frac{2}{3} \left[\int_0^3 \sqrt{9 - x^2} dx \right] - \frac{2}{3} \int_0^3 (3 - x) dx$$



Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$

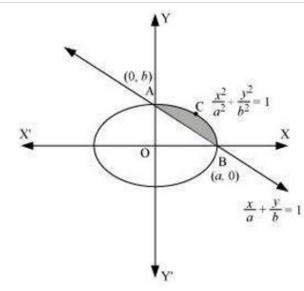
Solution 9:

The area of the smaller region bounded by the ellipse, $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, and the line, $\frac{x}{a} + \frac{y}{b} = 1$, is

represented by the shaded region BCAB as

∴ Area BCAB = Area (OBCAO) – Area (OBAO)

$$= \int_0^a b \sqrt{1 - \frac{x^2}{a^2}} dx - \int_0^a b \left(1 - \frac{x}{a}\right) dx$$



$$= \frac{b}{a} \int_{0}^{a} \sqrt{a^{2} - x^{2}} dx - \frac{b}{a} \int_{0}^{a} (a - x) dx$$

$$= \frac{b}{a} \left[\left\{ \frac{x}{2} \sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2} \sin^{-1} \frac{x}{a} \right\}_{0}^{a} - \left\{ ax - \frac{x^{2}}{2} \right\}_{0}^{a} \right]$$

$$= \frac{b}{a} \left[\left\{ \frac{a^{2}}{2} \left(\frac{\pi}{2} \right) \right\} - \left\{ a^{2} - \frac{a^{2}}{2} \right\} \right]$$

$$= \frac{b}{a} \left[\frac{a^{2}\pi}{4} - \frac{a^{2}}{2} \right]$$

$$= \frac{ba^{2}}{2a} \left[\frac{\pi}{2} - 1 \right]$$

$$= \frac{ab}{2} \left[\frac{\pi}{2} - 1 \right]$$

$$= \frac{ab}{4} (\pi - 2)$$

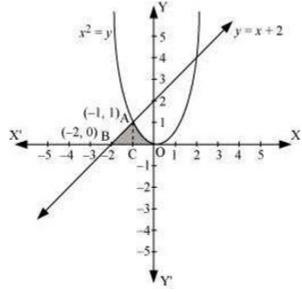
$$\therefore$$
 The required area is $\frac{ab}{4}(\pi - 2)$ sq. units

Question 10:

Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and x axis

Solution 10:

The area of the region enclosed by the parabola, $x^2 = y$, the line, y = x + 2, and x-axis is represented by the shaded region OABCO as



$$y = x + 2, x^2 = y$$

$$\therefore x^2 = x + 2$$

$$\Rightarrow x^2 - x - 2 = 0$$

$$\Rightarrow$$
 $(x-2)(x+1)=0$

$$\Rightarrow x = 2 \text{ or } x = -1$$

The point of intersection of the parabola, $x^2 = y$, and the line, y = x + 2, is A (-1, 1).

$$= \int_{-2}^{-1} (x+2) dx + \int_{-1}^{0} x^{2} dx$$

$$= \left[\frac{x^{2}}{2} + 2x \right]_{-2}^{-1} + \left[\frac{x^{3}}{3} \right]_{-1}^{0}$$

$$= \left[\frac{(-1)^{2}}{2} + 2(-1) - \frac{(-2)^{2}}{2} - 2(-2) \right] + \left[-\frac{(-1)^{3}}{3} \right]$$

$$= \left[\frac{1}{2} - 2 - 2 + 4 + \frac{1}{3} \right]$$

$$= \frac{5}{6} \text{ sq. units}$$

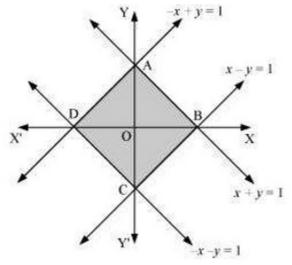
Question 11:

Using the method of integration find the area bounded by the curve |x| + |y| = 1

[Hint: the required region is bounded by lines x + y = 1, x - y = 1, -x + y = 1 and -x - y = 11]

Solution 11:

The area bounded by the curve, |x|+|y|=1, is represented by the shaded region ADCBA as



The curve intersects the axes at points A (0, 1), B (1, 0), C (0, -1), and D (-1, 0). It can be observed that the given curve is symmetrical about x-axis and y-axis.

∴ Area ADCBA = 4× Area OBAO

$$=4\int_0^1 (1-x)\,dx$$

$$=4\left(x-\frac{x^2}{2}\right)_0^1$$

$$=4\left[1-\frac{1}{2}\right]$$

$$=4\left(\frac{1}{2}\right)$$

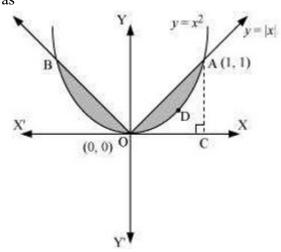
= 2 sq. units

Question 12:

Find the area bounded by curves $\{(x, y): y \ge x^2 \text{ and } y=|x|\}$

Solution 12:

The area bounded by the curves, $\{(x,y): y \ge x^2 \text{ and } y=|x|\}$, is represented by the shaded region as



It can be observed that the required area is symmetrical about y-axis.

Required area = 2 [Area (OCAO) – Area (OCADO)]

$$=2\bigg[\int_0^1 x dx - \int_0^1 x^2 dx\bigg]$$

$$=2\left[\left[\frac{x^2}{2}\right]_0^1-\left[\frac{x^3}{3}\right]_0^1\right]$$

$$=2\left[\frac{1}{2}-\frac{1}{3}\right]$$

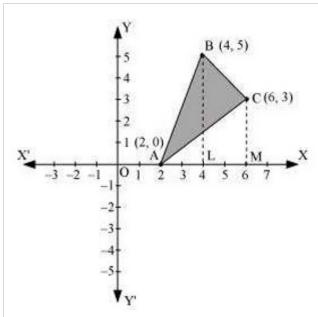
$$=2\left[\frac{1}{6}\right]=\frac{1}{3}$$
 sq. units

Question 13:

Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A (2, 0), B (4, 5) and C (6, 3)

Solution 13:

The vertices of $\triangle ABC$ are A (2, 0), B (4, 5), and C (6, 3).



Equation of line segment AB is

$$y - 0 = \frac{5 - 0}{4 - 2} (x - 2)$$

$$y = \frac{5}{2}(x-2)$$
 ...(1)

Equation of line segment BC is

$$y-5=\frac{3-5}{6-4}(x-4)$$

$$2y-10 = -2x+8$$

$$2y = -2x + 18$$

$$y = -x + 9$$
 ...(2)

Equation of line segment CA is

$$y-3=\frac{0-3}{2-6}(x-6)$$

$$-4y+12=-3x+18$$

$$4y = 3x - 6$$

$$y = \frac{3}{4}(x-2)$$
 ...(3)

Area (\triangle ABC) = Area (ABLA) + Area (BLMCB) – Area (ACMA)

$$= \int_{2}^{4} \frac{5}{2} (x-2) dx + \int_{4}^{6} (-x+9) dx - \int_{2}^{6} \frac{3}{4} (x-2) dx$$

$$= \frac{5}{2} \left[\frac{x^2}{2} - 2x \right]_2^4 + \left[\frac{-x^2}{2} + 9x \right]_4^6 - \frac{3}{4} \left[\frac{x^2}{2} - 2x \right]_2^6$$

$$= \frac{5}{2} [8 - 8 - 2 + 4] + [-18 + 54 + 8 - 36] - \frac{3}{4} [18 - 12 - 2 + 4]$$

$$= 5 + 8 - \frac{3}{4} (8)$$

$$= 13 - 6$$

$$= 7 \text{ sq. units}$$

Question 14:

Using the method of integration find the area of the region bounded by lines:

$$2x + y = 4$$
, $3x - 2y = 6$ and $x - 3y + 5 = 0$

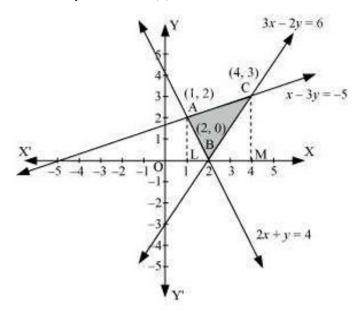
Solution 14:

The given equations of lines are

$$2x + y = 4$$
 ...(1)

$$3x - 2y = 6...(2)$$

And,
$$x-3y+5=0$$
 ...(3)



The area of the region bounded by the lines is the area of ΔABC . AL and CM are the perpendiculars on x-axis.

Area (
$$\triangle$$
ABC) = Area (ALMCA) – Area (ALBA) – Area (CMBC)

$$= \int_{1}^{4} \left(\frac{x+5}{3} dx \right) - \int_{1}^{2} (4-2x) dx - \int_{2}^{4} \left(\frac{3x-6}{2} \right) dx$$

$$= \frac{1}{3} \left[\frac{x^2}{2} + 5x \right]_1^4 - \left[4x - x^2 \right]_1^2 - \frac{1}{2} \left[\frac{3x^2}{2} - 6x \right]_2^4$$

$$= \frac{1}{3} \left[8 + 20 - \frac{1}{2} - 5 \right] - \left[8 - 4 - 4 + 1 \right] - \frac{1}{2} \left[24 - 24 - 6 + 12 \right]$$

$$= \left(\frac{1}{3} \times \frac{45}{2} \right) - (1) - \frac{1}{2} (6)$$

$$= \frac{15}{2} - 1 - 3$$

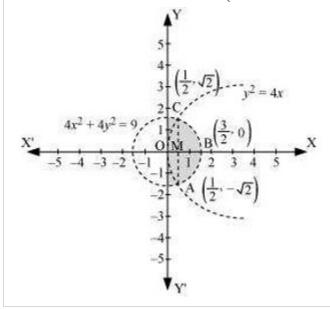
$$= \frac{15}{2} - 4 = \frac{15 - 8}{2} = \frac{7}{2} \text{ sq. units}$$

Question 15:

Find the area of the region $\{(x,y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$

Solution 15:

The area bounded by the curves, $\{(x,y): y^2 \le 4x, 4x^2 + 4y^2 \le 9\}$ is represented as



$$y^{2} = 4x$$

$$\Rightarrow 4x^{2} + 4(4x) = 9$$

$$\Rightarrow 4x^{2} + 16x - 9 = 0$$

$$\Rightarrow 4x^{2} + 18x - 2x - 9 = 0$$

$$\Rightarrow 2x(2x + 9) - (2x + 9) = 0$$

$$\Rightarrow (2x - 1)(2x + 9) = 0$$

$$\therefore x = \frac{1}{2} & y = \pm \sqrt{4x} = \pm \sqrt{2}$$

The points of intersection of both the curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2}, -\sqrt{2}\right)$.

The required area is given by OABCO.

It can be observed that area OABCO is symmetrical about x-axis.

∴ Area OABCO = 2× Area OBCO

Area OBCO = Area OMCO + Area MBCM

$$= \int_0^{\frac{1}{2}} 2\sqrt{x} dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9 - 4x^2} dx$$

$$= \int_0^{\frac{1}{2}} 2\sqrt{x} dx + \int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^2 - (2x)^2} dx$$
Let $2x = t$, $dx = \frac{dt}{2}$

When
$$x = \frac{1}{2}$$
, $t = 1$ and when $x = \frac{3}{2}$, $t = 3$

$$\Rightarrow \int_{0}^{\frac{1}{2}} 2\sqrt{x} dx + \frac{1}{4} \int_{1}^{3} \sqrt{9 - t^{2}} dt$$

$$\Rightarrow 2 \left[\frac{2}{3} x^{\frac{3}{2}} \right]_{0}^{\frac{1}{2}} + \frac{1}{4} \left[\frac{t}{2} \sqrt{9 - t^{2}} + \frac{9}{2} \sin^{-1} \left(\frac{t}{3} \right) \right]_{1}^{3}$$

$$\Rightarrow \frac{4}{3} \left[\frac{1}{2\sqrt{2}} \right] + \frac{1}{4} \left[\frac{9}{2} \cdot \frac{\pi}{2} - \frac{1}{2} \sqrt{8} - \frac{9}{2} \sin^{-1} \left(\frac{1}{3} \right) \right]$$

$$\Rightarrow \frac{2}{3\sqrt{2}} + \frac{9\pi}{16} - \frac{1}{2\sqrt{2}} - \frac{9}{8} \sin^{-1} \left(\frac{1}{3} \right)$$

$$\Rightarrow \frac{1}{6\sqrt{2}} + \frac{9\pi}{16} - \frac{9}{8} \sin^{-1} \left(\frac{1}{3} \right)$$

Area of OABCD = 2 Area of OBCO

8. Application of Integrals

$$\therefore \text{ Required area} = 2 \left[\frac{1}{6\sqrt{2}} + \frac{9\pi}{16} - \frac{9}{8} \sin^{-1} \left(\frac{1}{3} \right) \right]$$

$$= \frac{9\pi}{8} + \frac{1}{3\sqrt{2}} - \frac{9}{4}\sin^{-1}\left(\frac{1}{3}\right) \text{ sq. units}$$

Question 16:

Area bounded by the curve $y = x^3$, the x-axis and the ordinates x = -2 and x = 1 is

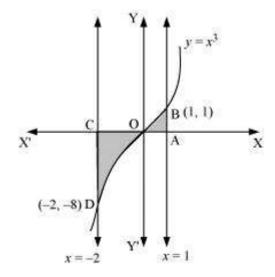
$$A. - 9$$

B.
$$-\frac{15}{4}$$

C.
$$\frac{15}{4}$$

D.
$$\frac{17}{4}$$

Solution 16:



Required area = $\int_{-2}^{1} y dx$

$$=\int_{-2}^1 x^3 dx$$

$$=\left[\frac{x^4}{4}\right]_{-3}^1$$

$$\left\lceil \frac{1}{4} - \frac{\left(-2\right)^4}{4} \right\rceil$$

$$\left(\frac{1}{4} - 4\right) = -\frac{15}{4}$$

$$\therefore \text{Area} = \left| \frac{-15}{4} \right| = \frac{15}{4} \text{ sq. units}$$

Thus, the correct answer is C.

Question 17:

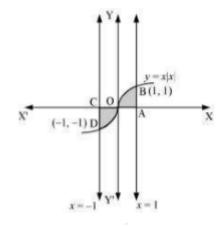
The area bounded by the curve y = x|x|, x-axis and the ordinates x = -1 and x = 1 is given by

[Hint: $y = x^2$ if x > 0 and $y = -x^2$ if x < 0]

A.0

- B. $\frac{1}{3}$
- C. $\frac{2}{3}$
- D. $\frac{4}{3}$

Solution 17:



Required area = $\int_{-1}^{1} y dx$

$$= \int_{-1}^{1} x |x| dx = \left| \int_{-1}^{0} x^{2} dx \right| + \left| \int_{0}^{1} x^{2} dx \right|$$

$$= \left| \int_{-1}^{0} -x^{2} dx \right| + \left| \int_{0}^{1} x^{2} dx \right|$$

$$= \left| \left[\frac{-x^{3}}{3} \right]_{-1}^{0} \right| + \left| \left[\frac{x^{3}}{3} \right]_{0}^{1} \right|$$

$$= \left| -\left(-\frac{1}{3} \right) \right| + \frac{1}{3}$$

$$= \frac{2}{3} \text{ sq. units}$$

Thus, the correct answer is C.

Ouestion 18:

The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is

A.
$$\frac{4}{3}(4\pi - \sqrt{3})$$

B.
$$\frac{4}{3}(4\pi + \sqrt{3})$$

C.
$$\frac{4}{3} (8\pi - \sqrt{3})$$

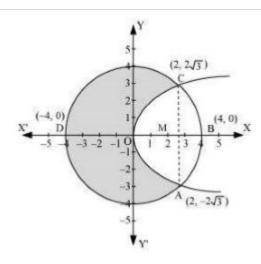
D.
$$\frac{4}{3} (8\pi + \sqrt{3})$$

Solution 18:

The given equations are

$$x^2 + y^2 = 16 \dots (1)$$

$$y^2 = 6x ...(2)$$



$$v^{2} = 6x$$

$$\Rightarrow x^2 + 6x = 16$$

$$\Rightarrow x^2 + 6x - 16 = 0$$

$$\Rightarrow$$
 $(x+8)(x-2)=0$

$$\Rightarrow x = -8 \& x = 2$$

when
$$x = 2$$
 $y = \pm \sqrt{15} = \pm 2\sqrt{3}$

Area bounded by the circle and parabola (unshaded portion)

$$= 2 \left[\int_0^2 \sqrt{16x dx} + \int_2^4 \sqrt{16 - x^2} dx \right]$$

$$=2\sqrt{6}\int_{0}^{2}\sqrt{x}dx+2\int_{2}^{4}\sqrt{16-x^{2}}dx$$

$$=2\sqrt{6}\times\frac{2}{3}\left[\left(x\right)^{\frac{3}{2}}\right]_{0}^{2}+2\left[\frac{x}{2}\sqrt{16-x^{2}}+\frac{16}{2}\sin^{-1}\frac{x}{4}\right]_{2}^{4}$$

$$=2\sqrt{6}\times\frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{2}+2\left[8.\frac{\pi}{2}-\sqrt{16-4}-8\sin^{-1}\left(\frac{1}{2}\right)\right]$$

$$= \frac{4\sqrt{6}}{3} \left(2\sqrt{2}\right) + 2 \left[4\pi - \sqrt{12} - 8\frac{\pi}{6}\right]$$

$$=\frac{16\sqrt{3}}{3}+8\pi-4\sqrt{3}-\frac{8}{3}\pi$$

$$= \frac{4}{3} \left[4\sqrt{3} + 6\pi - 3\sqrt{3} - 2\pi \right]$$

$$=\frac{4}{3}\left[\sqrt{3}+4\pi\right]$$

$$=\frac{4}{3}\left[4\pi+\sqrt{3}\right]$$
 sq. units

Area of circle = $\pi(r)^2$

$$=\pi(4)^2$$

= 16π sq. units

 \therefore Area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$

$$= Area of circle - \frac{4}{3} \left[4\pi + \sqrt{3} \right]$$

$$= \pi(4)^2 - \frac{4}{3} \left[4\pi + \sqrt{3} \right]$$

$$=\frac{4}{3}\left[4\times3\pi-4\pi-\sqrt{3}\right]$$

$$=\frac{4}{3}\left(8\pi-\sqrt{3}\right)$$
 sq. units

Thus, the correct answer is C.

Question 19:

The area bounded by the y-axis, $y = \cos x$ and $y = \sin x$ when $0 \le x \le \frac{\pi}{2}$

A.
$$2(\sqrt{2}-1)$$

B.
$$\sqrt{2} - 1$$

C.
$$\sqrt{2} + 1$$

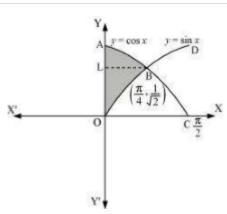
D.
$$\sqrt{2}$$

Solution 19:

The given equations are

$$y = \cos x \dots (1)$$

And,
$$y = \sin x ... (2)$$



Required area = Area (ABLA) + area (OBLO)

$$= \int_{\frac{1}{\sqrt{2}}}^{1} x dy + \int_{0}^{\frac{1}{\sqrt{2}}} x dy$$
$$= \int_{\frac{1}{\sqrt{2}}}^{1} \cos^{-1} y dy + \int_{\frac{1}{\sqrt{2}}}^{1} \sin^{-1} y dy$$

Integrating by parts, we obtain

$$= \left[y\cos^{-1}y - \sqrt{1-y^2}\right]_{\frac{1}{\sqrt{2}}}^{1} + \left[y\sin^{-1}y + \sqrt{1-y^2}\right]_{0}^{\frac{1}{\sqrt{2}}}$$

$$= \left[\cos^{-1}(1) - \frac{1}{\sqrt{2}}\cos^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sqrt{1-\frac{1}{2}}\right] + \left[\frac{1}{\sqrt{2}}\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sqrt{1-\frac{1}{2}} - 1\right]$$

$$= \frac{-\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$$

$$= \frac{2}{\sqrt{2}} - 1$$

$$= \sqrt{2} - 1 \text{ sq. units}$$

:. The correct answer is option B.