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4. Inverse Trigonometric Functions

Exercise 4.1

1 A. Question

Find the principal value of each of the following:

Answer

Let sin~* (— \?3) =y

. _ E) i Ty i T
Thensiny = (—?) = —sin (3) = sin(—)
We know that the principal value of sin~! is [—E_E]
22
n(-1) = -2
sin(—=) = ——
3 2

-

Therefore the principal value of sip—1 (_ E) is —g
2

1 B. Question

Find the principal value of each of the following:

Answer
Let COS_l (— \2—3) =y

cosy = _

-
2 |w'|

We need to find the value of y.

We know that the value of cos is negative for the second quadrant and hence the value lies in [0, m].

COS Yy = - COS (E)
m
cosy =Tm—-—

6

1 C. Question

Find the principal value of each of the following:

1

[ NB3-1

Answer




1 D. Question

Find the principal value of each of the following:

e

Answer

. g (V341
sin 1(—|
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1ﬁx1(1)2+1x1 ﬁz
= sin” | — —{—= — =
2 V2 V2 2
= sin~? ﬁ + sin~?! (i)
2 V2
_'1T+'1T
3 4
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1 E. Question

Find the principal value of each of the following:

c 1 3rm )
s cos —
4

Answer
Let sin™? (cos %ﬂ) =y

. am . am o LT
Then siny = cos—- = —sm( _T) = —sm(;)



We know that the principal value of sin~?! is [—E_E]
22

—sin G) = cos%IT

Therefore the principal value of gin~—1! (cos %") is —E.

1 F. Question

Find the principal value of each of the following:

c 1 Sm '
s tan —
4

Answer
Lety =sin™! (tan ?)
Therefore, siny = (tans—“) = tan (11 + E) = tan- = 1 = sin (E)
4 4 4 2
We know that the principal value of sin~! is [—E_E]
2°2

And sin (E) = tan>=

2 4
Therefore the principal value of gin—1! (tan 5—“) is g

4

2 A. Question

n y
Find the principal value of each of the following:sin 1; —2s1n
Answer
&
sin™!>—2sin™! = = sin™* > —sin™? (2 x= 1-(%) )

W2

1
= sin‘lz —sin™*(1)

2 B. Question

sin~! ﬁJ
3

-

Find the principal value of each of the foIIowing:sin_1 {COS

Answer

sin~* {cos (sin~22)}
———



3 A. Question

Find the domain of each of the following functions:
f(x) = sin~1x2

Answer

Domain of sin~! lies in the interval [-1, 1].

Therefore domain of sin~x? lies in the interval [-1, 1].
-l=x?=1

But x2 cannot take negative values,

So,0=x*=1

-lex<=1

Hence domain of sin=*x? is [-1, 1].

3 B. Question

Find the domain of each of the following functions:
f(x) = sin"Ix + sinx

Answer

Domain of sin~! lies in the interval [-1, 1].

-le=x<1.
The domain of sin x lies in the interval [—E_E]
22
n___m
—— = x = —
2 2

-1.57 = x =< 1.57

From the above we can see that the domain of sin"1x + sinx is the intersection of the domains of sirrlx and
sin Xx.

So domain of sin"1x + sinx is [-1, 1].
3 C. Question

Find the domain of each of the following functions:

fx) = qinTx? —1
Answer
Domain of gin~! lies in the interval [-1, 1].

Therefore, Domain of gip—14/x2 — 1 lies in the interval [-1, 1].

-l Vx2-1 =1



N
n

x = —land1 < x = /2

Domain of gin=1y/xZ— 1 is [—ﬁ_l] ull, \;’E].

3 D. Question

Find the domain of each of the following functions:
f(x) = sin"Ix + sin"12x

Answer

Domain of sin~? lies in the interval [-1, 1].

-l=x =1
Therefore, the domain of sin~? 2x lies in the interval [_E_E]
272

-l=2x =1

=X =

ba | =
ba | =

The domain of sin"1x + sin"12x is the intersection of the domains of sin"1x and sin"12x.

So, Domain of sin"1x + sin"12x is [_1,3].
2 2

4. Question

If sin"1x + sin"ly + sin"1z + sin"lt = 2m, then find the value of
X2 +y2 + 722 4+ t2

Answer

Range of sin"1x is [_E_E].

272
Give that sin"1x + sinly + sin"lz + sin"lt = 2n
Each of sin"1x, sin-ly, sin-1z, sin"1t takes value of g

So,

x=1l,y=1,z=1landt=1.

Hence,

=x2+y?+ 22+t

=1+1+1+1

=4

5. Question

If (sin"1x)2 + (sin"ly)2 4 (sin"1z)2 = 3/4 n2. Find x% + y2 + 22

Answer



m m

Range of sin"1x is [_—_ ]

22
Given that (sin™*x)? + (sin™'y)? + (sin~'z)? = %112
Each of sin~1x, sin‘ly and sin—!z takes the value of g
x=1]y=1andz=1.
Hence,
=x2 +y2 422
=1+1+1
= 3.
Exercise 4.2
1. Question
Find the domain of definition of f(x) = cos 1(x2-4).
Answer
Domain of cos—1x lies in the interval [-1, 11.
Therefore, the domain of cos 1(x2 - 4) lies in the interval [-1, 1].
-l=x?—-4 <=1
3= x? <5
+3 <= x = +/5
—/5 =x = —/3and3 =x = /5
Domain of cos~ (x* — 4) is [V, —V3]u [V3,V5].

2. Question

Find the domain of f(x) = cos™12x + sin"1x.
Answer

Domain of cos~'x lies in the interval [-1, 1].

Therefore, the domain of cos™*(2x) lies in the interval [-1, 1].

-l=2x =1

Domain of cos™(2x) is _71 3]_

Domain of sin—tx lies in the interval [-1, 1].
.. Domain of cos™(2x) + sin~*xlies in the interval _—1,3].
22

3. Question

Find the domain of f(x) = cos™! x + cos x.

Answer



Domain of cos~1x lies in the interval [-1, 11.

Domain of cos x lies in the interval [0, it] = [0, 3.14]

. Domain of cos—1x + cos x lies in the interval [-1, 11].

4 A. Question

Find the principal value of each of the following:

Answer

We know that for any x € [-1, 1], cos~! represents an angle in [0, .

\-'E

cos 1 (__) = an angle in [0, t] whose cosine is (_

="|'|_'—E
&
)
. -3 _ 5m
COs 7 = 6

4 B. Question

Find the principal value of each of the following:

Answer

Let cos™* (—i_) =y.

V2

Then, cosy = — =

'\,-'E

T
-COS —
4

(53
- )

We know that the range of the principal value branch of cos~1 is [0, 1t] and cos (%")

Therefore, the principal value of cos™? (— %) i
J

4 C. Question

Find the principal value of each of the following:

4m
3

-1

cos™ | sin

Answer

\-'E

2

).

|~

V

ral



_1( . 4‘1‘[)
cos™! [sin—
3
= cos~! (sin (’n + g))

— _1 V3
= cos I —
2

For any x € [-1,1], cos 1x represents an angle in [0, ] whose cosine is x.

» Principal value of cos™1 (sm ) is ?

4 D. Question

Find the principal value of each of the following:

3r
co tan —
4J

Answer

cos™t (tan g—ﬂ)
4
= cos™! (tan (E + E))
2 4

= cos™1(—1)

For any x € [-1, 1], cos~1x represents as an angle in [0, t] whose cosine is x.
os i (—-1) =m

~Principal value of cgs~1 (tan ) is TI.

5 A. Question

For the principal values, evaluate each of the following:

-1

COos -1

+2s1n

b | —
| =

Answer

Let cos™? G) = x

Then, cos X =~ = cos G)

() = 3
) -

Let sin~? (

[N

Then, siny =2 = sin (E)
2 6

() )



Hence, cos™* G) + 2sin™? G)

~Principal value of cgs~1 (3) + 2sin™! (3) isZT,
2 2 3
5 B. Question

For the principal values, evaluate each of the following:

lJ—Zsin_l[—lJ
2 2

Answer

cos_l

Let cos~1 (1) = X.
2

1
Then, cos X == = cos (3)
2

3
1
. -1{Z) _
COos (2)

Let sin~? (— g) = y.

- (2)<n (-3

w| =

Then, siny = —

B | e

3
. Principal value ofcos—1 G) — 2sin~? (— é) is —.

5 C. Question

For the principal values, evaluate each of the following:

)

. 1 1 _1
S11 [——J——Z Cos
]

Answer
Let Let gin~? (— 1) =X
2

- (2) 50 (-3

Then, sin x = —

r |



) __1( 1) s
ssinTt |l —= ) = ——
2 6

Then, cosy = =V3 = cos( _E)
&

2 6
pence, st (=) + cos= (22) -~ 1 2(2)
L 10m

= _6 + ?

—m + 10m
B 6

Om
~ 6

3
T2

.. X 3% . 3
»~ Principal value of gin—! (_ é) + cos~t (%3) is ?ﬂ

5 D. Question

For the principal values, evaluate each of the following:

TN E LB
sin” | ——— | +cos
-3 -5
Answer
. f3 E)
sin~ (—L) + cos‘l(L)
2 2
= —g + E {Since sin~'x = An angle in —E_E] whose sine is X,
22

Similarly, cos™* = An angle in [0, 1t] whose cosine is x}

. V3 L(V3)  m
5in (—?) + cos (?) = —g

= =

. . | ] . T
~ Principal value of gin—1 (_"_3) + cos~? (‘*—3) is —=
2 2

Exercise 4.3
1 A. Question

Find the principal value of each of the following:



-1
Tan

1
v
Answer

We know that, for any x € R, tan~! represent an angle in (33) whose tangent is x.
2 2

So, tan™! (%) = An angle in (3,3) whose tangent is %
v 2 2 v

Tt
6
- _1(1) T
S tanTt | —= ) = —

V3 6

Hence, the Principal value of tan~*! (%) is E.
J

1 B. Question

Find the principal value of each of the following:

-1
tan

B
-
Answer

We know that, for any x € R, tan~* represent an angle in (iﬂ) whose tangent is x.
2 2

So, tan~?! (— %) = An angle in (i_f) whose tangent is —%
272

Y v

. . _ 1 . m
Hence, Principal value of tan™2 (—3) is —=.
7

1 C. Question

Find the principal value of each of the following:

-1 i
tan Cos—
-

Answer

tan~! (cos E) = tan~1(0) [-- cosg =0]
We know that, for any x € R, tan~! represent an angle in (33) whose tangent is x.
2 2

S~ tan~1(0) = 0
Hence,

Principle value of tan™? (cos E) is 0.
2

1 D. Question



Find the principal value of each of the following:

A
27
2cos—
3

tan_l

Answer

tan~?! (2 cosza—ﬂ) = tan~?! (2 X _?1)

= tan (1)

We know that, for any x € R, tan~! represent an angle in (33) whose tangent is x.
2 2

T
ftanTi(=1) = —-
nH(-D) = -

. . 2 .
Hence, Principle value of tan—? (2 CcoSs —“) is —E.
3

2 A. Question

For the principal values, evaluate each of the following:

B
tan_l(—l) +cos ! [ ——J
NG

Answer
Let tan (1) = x.

Then tan x = -1

= -tan—
4
= L 3n
- tan( 4) = fan 4
am
tan‘l(—l) = T

B B1s
= cos4
T 3n
= cos( _E) = COST
. (—1) 3n
cost|{l— ) = —
V2 4
-1 -1 Elus 3m 6T am
Hence, tan™*(—1) + cos (—J =5 + = =5

2 B. Question

For the principal values, evaluate each of the following:

ala L3
tan I-stm 4cos”} -

l




Answer
Letcos™ —=x
2
COS X = COS (E)
6
m
x=(3)
&
So now,

1) 2sin| 4 cos™

tan~'{2sin

112sin| 4 cos™

o)
e )
o) (e
o)
]

tan~! {2 sin (4 cos™!
3 A. Question
Evaluate each of the following:

tan ! (1)+ cos ™!

Answer

Let tan~ (1) = x.

Thentanx =1 =E

1 2
Thencosy =—= = —cos- = cos( —E) = cos—,
2 3 3 3
1 2
cos— 1 (——) = = ... (ii)
2
Again,

Let sin~? (—%) = z.

. 1 . .
Thensinz=—= = —s]nE = s]n(—z)
2 & 6



1 1
tan"1(1) + cos‘l(—i) + sin~?! (_E)

n 2nm - S,
=T+ (—g) [from (i), (ii), (iii)]

3 B. Question

Evaluate each of the following:

Aol 2)

Answer
(o) i “(sin(=9))
tan (ﬁ + tan"}(—3) + tan (sm ;
T L

We know that, for any x € R, tan~! represent an angle in ( ) whose tangent is x.
2 2

-1
tan

tan‘l(sin (—g)) = tan(—1) [-.-sin (—g) = —sin G) = —1]

Now, —1(_i) “1f_ —1( i (_E)) becomes,
tan =) + tan (=v3) + tan™*{sin .

-3+ G+ )

Therefore the principle value of tan~? (— Tl_) + tan"}(—3) + tan~? (sin (— 3)) is 27,
V3 2 4

3 C. Question

Evaluate each of the following:
5t af (13w
tan +C0s 4 COS
6 |7 s

Answer

-1
tan




tan~?! (tan ?) + cos™? {cos (?)}

Firstly, tanZ = tan(n—z) = —tan- = —i_ ...... (i)
& 6 &

Also, cos(?) = cos(zn + E) —cos G) R (ii)

From (i) and (ii),

tan~? (tan ?) + cos! {cos (?)} becomes,

Now,

We know that, for any x € R, tan~! represent an angle in (33) whose tangent is x.
2 2

Hence, mﬂ-l(_%) + cos‘l(ﬂ) RPN
W3 & & &
Therefore, Principal Value of tan=1 (tan 5_“) + cos™?! {cos (ﬁ)} is 0.
& &

Exercise 4.4

1 A. Question

Find the principal values of each of the following:
sec™}(-v2)

Answer

Let sec’}(-v2) =y

=>secy = -v2
=- sec(g) =V2
- see(n-3)

_ am

- ()

The range of principal value of seclis [0, n]-{g}
3my _

and sec(r) =-V2

. The principal value of sec™}(-v2) is 3:“

1 B. Question



Find the principal values of each of the following:
sec™}(2)

Answer

Let sec1(2) =y

=>secy =2

T
= sec(3)
The range of principal value of seclis [0, n]—{g}
™ —
And sec(g) =2

. The principal value of sec1(2) is g

1 C. Question

Find the principal values of each of the following:

_ . 3w
sec}| 2sin —
A4

Answer

. 3
Let us assume ZSIHTT[ =0

. 3T 1
We know sin— = —
4 V2

. 3 1
- 2sin™" = 2+
4 V2
. 3T
= 25|n: =2

~. The question becomes sec1(v2)
Now,
Let sec}(v2) =y

=>secy =v2

™ —
= sec(z) =V2
The range of principal value of sec’lis [0, n ]—{g}
n —
And sec(z) =2

.. The principal value of sec‘1(2sin3£) is E
1 D. Question
Find the principal values of each of the following:

kI

sec | 2tan —
A4

Answer



Let us assume 2tan3Tﬂ =0
We know tan%ﬂ =-1
2tan%n = 2(-1)
= 2tan3—ﬂ =-2
4
. The question converts to sec™}(-2)
Now,

Let sec1(-2) =y

=secy =-2

= - sec(g) =2

= sec(n - E)
3
= Sec(z_ﬂ)
3

The range of principal value of seclis [0, n]—{g}

and sec@—“) =-2

3m

.. The principal value of sec‘1(2tanT) is 23—“

2 A. Question

For the principal values, evaluate the following:
tan"1v3 - sec’1(-2)

Answer

The Principal value for tan™1v3

Let tan1(v3) =y

=>tany =+V3

The range of principal value of tan-lis {—E,E}
L —_—
And tan(g) =3

». The principal value of tan"}(v3 ) is ~.
Now,

Principal value for sec™1(-2)

Let sec’1(-2) =z

=secz=-2

=_ secG) =2

= sec(n - E)
3



_ Zm
= sec(¥)
The range of principal value of seclis [0, n]—{g}

and sec(za—“) =-2

Therefore, the principal value of sec’(-2 ) is 23—“

~tan1v3 -sec’1(-2)

™ 2m

R

~tan'lv3 - sec’l(-2) = _g—ﬂ

2 B. Question

For the principal values, evaluate the following:

: —£ ] —ESEC_I{ Z‘ranEJ
2 6

sin”

Answer

Let,

['%]

—/

=siny =

m|ﬁ

=-siny = ¥3
2
. m
= -sin —
3
As we know sin(-8) = -sin@
. T . —_
. -sin = = sin (—“)
3 32
The range of principal value of sin"l is (f,z) and sin (i) = 3
22 3 2

Therefore, the principal value of sin‘l(%'q) is _g—ﬂ (1)

Let us assume 2tan§ =0

b 1
We know tan— = —
(5] V3

2tang = 2(\%)

s 2
= 2tan—- = —+—
&6 v 3

.. The question converts to sec‘l(%)
J

Now,



Let sec‘l(i_) =z

:)
-sed) = (3)

The range of principal value of seclis [0, n]—{g}

and secG) = (%)

Therefore, the principal value of sec‘1(2tang) is g ..... (2)

wal

=>secz=(

Sin‘l(%ﬁ) - Zsec‘1(2tang)

-m 2In

=5 = (from (1) and (2))

—31

3

-

Therefore, the value of Sin‘l(%ﬁ) = 25ec‘1(2tan%) is -

3 A. Question

Find the domain of

sec! (3x-1)

Answer

The range of sec x is the domain of sec1x
Now,

The range of sec x is (-, -1]U [1, =)

. The domain of a given function would be
3x-1=-land3x-1=1

3x<=0and 3x =2

2
standsz

. The domain of the given function is (—oo,O]U[g,oo)

3 B. Question

Find the domain of

sec”! x-tan"1x

Answer

Domain of sec™1x is (-0,-1]U[1,)

Domain of tan"!x is R

Union of (1) and (2) will be domain of given function

(-0,-1]U[1,)UR



= (-0,-1]U[1,)

.. The domain of given function is (-o,-1]JU[1,»).
1 A. Question

Find the principal values of each of the following:
sec™(-v2)

Answer

Let sec1(-v2) =y

=secy = -v2
=_ sec(g) =2
= sec(n—g)

_ am

- ()

The range of principal value of seclis [0, n]—{g}
amy _

and sec(T) =-V2

. The principal value of sec1(-v2) is ST“

Exercise 4.5
1 A. Question

Find the principal values of each of the following:
cosec1(-v2)

Answer

cosec’! (-v2) =y

= cosecy = -v2

= -cosecy = V2

= -cosec E =2

As we know cosec(-0) = -cosecB

.. -Cosec — = cosec (i)
4 s
The range of principal value of cosec™! is [_2—“,5]—{0} and
T\ _
cosec (T) =-v2

Therefore, the principal value of cosec™1(-v2) is ?
1 B. Question

Find the principal values of each of the following:
cosec™1(-2)

Answer



cosecl-2 =y
= cosecy = -2

= -cosecy = 2
= -cosec — =2
5]
As we know cosec(-0) = -cosecb
-, -COSec = = cosec (3)
6 6
The range of principal value of cosec™! is [_2—'",%]—{0} and
-y _
cosec (?) =-2
Therefore, the principal value of cosec™1(-2) is ?.

1 C. Question

Find the principal values of each of the following:

i 2
cosec —]

g

Answer

Let cosec‘l(f—E) =y

2
= cosecy = (_E)
J

= cosec(g) = (%)

The range of principal value of cosec™! is _2—“% -{0}

and cosec(g) = (%)

Therefore, the principal value of cosec‘l(%) is g
J

1 D. Question

Find the principal values of each of the following:

27
3

cosec™| 2cos

Answer

_ 2
cosec 1(2cos?"1)

2
Let us assume 2cos?'n =0

2n
3

We know cos— = _?1
. Zm _ -1
S 2cos? = 2(?)

2
= 2cos?11 =-1



~. The question converts to cosec™(-1)

Now,
cosec1l-1=
y
=cosecy = -1
=-cosecy =1
= -cosec E =1
As we know cosec(-8) = -cosecb

'I'[ —Tr
;. -COosec — = cosec (—)

2 2
The range of principal value of cosec™! is ;—“g -{0} and
cosec (3) =-1

2
g q _ 2 A

Therefore, the principal value of cosec 1(2cos?“) is—.

2. Question

Find the set of values of cosec1(v3/2).

Answer

Let y = cosec™! (v3/2)

We know that,

Domain of y = cosec! x is (- o, 1] U [1, «]
Butv3/f2 <1

Therefore, it can not be a value of y.

Hence, Set of values of cosec™1(v3/2) is a null set.
3 A. Question

For the principal values, evaluate the following:

% ]
sin”! —£ +cosec” —L]
2 V3
Answer
Let,
.1 =3 =
s (%) 7y

=:osiny=l"3
2

:—siny =V3
2
. m
= -Sin —

3

As we know sin(-8) = -sin8

. m . —
s =sin — = sin (—“)
3 3



-

The range of principal value of sin"1 is (T g) and sin (_3—“)

r

Therefore, the principal value of Sin‘l(%ﬁ) is—....(1)
Let,

_]_ lﬁ =
cosec ( ; ) z

= cosecz = _*3
2

= _cosecz =223
2

m
= -cosec 3
As we know cosec(-8) = -cosecb

o -
S —cosec 3 = cosecC (?)

The range of principal value of cosec™! is is _2—“% -{0} and

Therefore, the principal value of cosec‘l(%’a) oy, N )

From (1) and (2) we get

—T —T

= — 4+ —
3 3
—2n

3 B. Question

For the principal values, evaluate the following:

sec™ (¥2)+2cosec™ ( —ﬁ)

Answer

Let sec’}(-v2) =y

=>secy=-v2
=- sec(g) =V2
= sec(n )

_ am

= sec(T)

The range of principal value of seclis [0, n]-{g}
3my _

and sec(r) = -V2.

Let,

cosec™l-v2 =z



= cosecz = -V2

= -cosecz = V2
m
= -cosec | = V2
As we know cosec(-0) = -cosecb

o -
.~ —C0secC — = cosec (—)
4 4

The range of principal value of cosec™! is [_2—'",%]—{0} and
—m\ _

cosec (T) = -v2

Therefore, the principal value of cosec™1(-v2) is ?

cosecl-v2 =y

= cosecy = -V2

= -cosecy = V2

= —cosec E =2

As we know cosec(-8) = -cosecB

'I'[ —TT
s —C0secC — = cosec (—)
< 1

The range of principal value of cosec™! is [_2—“,3]—{0} and
) _
cosec (T) = -v2

Therefore, the principal value of cosec™1(-v2) is ?

From (1) and (2) we get

3 C. Question

For the principal values, evaluate the following:

sin™! [c-nns{rcns,-:c"1 ( —Z)H

Answer

First of all we need to find the principal value for cosec™1(-2)
Let,

cosecl-2 =y

= cosecy = -2

= -cosecy = 2

m
= -cosec 5= 2



As we know cosec(-6) = -cosecH
/. ~COSec — = cosec (3)
6 3
The range of principal value of cosec™! is [_2—'",%]—{0} and
-y _
cosec (?) = -2
Therefore, the principal value of cosec™1(-2) is ?.
. Now, the question changes to
Sin~![cos—]
&
Cos(-0) = cos(8)
. we can write the above expression as
Sin~![cos~]
6
Let,
13y =
Sin (7) y

=>siny=ﬁ
2

. W
=Sin -
3

—T

The range of principal value of sin"! is (T g) and sin G)

Therefore, the principal value of Sin‘l(g) is g .

Hence, the principal value of the given equation isg .

3 D. Question

For the principal values, evaluate the following:

11w

cosec” [ 2tan

Answer

We can write,
tanm = tan (2m —E)
5] 5]

tan(2n-0)
= tan(-0)

= -tan®

11 ™
. ta nTﬂ becomes -tan_

™ 1
-tan—- = —
(5] V3

11 2
= 2tan— = —
6 v 3



: 2
. The question converts to cosec‘l(-Ta)
N

Let cosec‘l(%) =y

v

2
= cosecy = (—5)
J

- cose(?) - ()

The range of principal value of cosec™! is [_2—'",%]—{0}

and cosec(g) = (\2—3)

. . 2 . M
Therefore, the principal value of cosec‘l(—ﬁ) is <.
N

Exercise 4.6

1 A. Question

Find the principal values of each of the following:
cot™1(-v3)

Answer

Let cot}(-v3) =y

= coty =-v3
=- cot(g) =3
- cofn-)

- o)

The range of principal value of cotlis (0, m)

and cot(%ﬂ) = -V3

= The principal value of cot1(-v3) is %ﬂ

1 B. Question

Find the principal values of each of the following:
cot1(v3)

Answer

Let cot1(v3) =y

=coty =+v3

— ™ —

= cot(g) =3

The range of principal value of cotlis (0, m)

and cot(g) =3

. The principal value of cot™1(v3) is%



1 C. Question

Find the principal values of each of the following:

-1
cot

-1 ]

J3

Answer

Let cot }(2) =y
v 3

-1
=>C0ty =.‘_3
\

) -

va

cofn )

cot(zg—“)

The range of principal value of cotLis (0, m)

and cot(E—“) -
3 V3

.. The principal value of cot‘l(%;) is 23—“
v

1 D. Question

Find the principal values of each of the following:

-1
cot

R
tan —
4

Answer

The value of

tang—ﬂ =-1
4

- The question becomes cot™1(-1)

Let cot1(-1) =y

=coty =-1
= - cot(g) =1
- o)

am
cot( %)
The range of principal value of cotlis (0, m)
3my _
and cot(T) =-1
. The principal value of cot‘l(tan%ﬂ) is %ﬂ

2. Question

Find the domain of f(x) = cotx + cot! x.



Answer

Now the domain of cot x is R

While the domain of cot1x is [0, ]

. The union of these two will give the domain of f(x)
=R UI[0,m]

= [0,m]

. The domain of f(x) is [0,1]

3 A. Question

Evaluate each of the following:

g 1 1, _
cot ' —= — cosec 1(—2)—sec 1[

3

Answer

& o
Y]
—

Let cot‘l(:,—;) =y

=coty = :—;
=-cofs) - &
- con-3)

2m
cot(%7)
The range of principal value of cot™lis (0, n)

and cot(E—“) -1
3 V3

.. The principal value of cot‘l(%;) is 23—“ ..(1)
N

Let,

cosec -2 =z

= cosecz = -2

= -cosecz =2

= —cosec E =2

As we know cosec(-8) = -cosecB

.. —cosec E = cosec (?)

The range of principal value of cosec™! is _2—“% -{0} and
cosec (?) =-2

Therefore, the principal value of cosec1(-2) is ?...(2)

Let sec‘l(%) =w

v



2
=Secw= (—,_)
\-'3

-sed) - (3)

The range of principal value of seclis [0, n]—{g}

and sec(g) = (%)

Therefore, the principal value of sec‘l(%) is g...(B)
N

From (1), (2) and (3) we can write the above equation as

_2m -7 i
3 6 3
_ Am+m+2n
[
7m

3 B. Question

Evaluate each of the following:

i . 13
cotl{lcos sin IT]

Answer

For finding the solution we first of need to find the principal value of
L -1(V3

Sin (T)

Let,

s () =

(%]

Y

=siny =

M|

. m
= sin -
3
. . . _1 . i E . E _
The range of principal value of sin™ is ( - ,2) and sin (3) =
Therefore, the principal value of Sin‘l(%g) is g
.. The above equation changes to cot‘1(2cos§)
Now we need to find the value of 2cos§
. ™ 1
.. COS— = -
3 2
= 2cos= =1 x-=
2 2
= 2cosg =1

Now the equation simplification to cot™1(1)



Let cot1(1) =y

=coty=1

= cot(g) =1

The range of principal value of cot™lis (0, )

and cotG) =1

. The principal value of cot‘1(2cos(Sin‘1(%§))) isg

3 C. Question
Evaluate each of the following:

1 3
cosec [ —

NE

L 2cot (=)

Answer

Now first of the principal value of

cosec —
v 3

Let cosec‘l(f—E) =y

= cosecy = (%)

- cose(?) - (3

The range of principal value of cosec™! is _2—“% -{0}
and cosec(g) = (%)

Therefore, the principal value of cosec‘l(%) is g...(l)

Now, the value of cot™1(-1)

Let cot1(-1) =y

=coty =-1
=- cot(g) =1
- corfn-3)

_ am
= cot(T)
The range of principal value of cotlis (0, m)
3my _
and cot(r) =-1
Therefore, the principal value of cot™1(-1) is 3:“ ..(2)

From (1) and (2) we can write the given equation as



3 D. Question

Evaluate each of the following:

(=)

1

- -1
tan + cot

1
V3
Answer

Let tan'l(2) = y
V3

-1
=>tany =5
V

= - tan(f) _aiie
& V3

-an(-)

. The principal value of tan‘l(:,—;) is ? ...(1)

Let cot‘l(_,—;) =7z
X

-1
=2>cotz=—
V3

=- cot(ﬂ) -1
3 v 3

- cofn -

- o)

The range of principal value of cotlis (0, m)

and cot(z—“) i
3 Va3

. The principal value of cot‘l(:,—;) is 23—“ ...(2)
sin— = -1

2
~tan 1(-1)

Let tan"1(-1) = w

=>tanw=-1

=- tanG) =1

_ L
- ()
. The principal value of tan"1(-1) is ?...(3)

From(1),(2) and (3) we get



Exercise 4.7
1 A. Question

Evaluate each of the following:
: _1[ I ]
S | sil—
6
Answer
The value of sing is ;
.. The question becomes sin‘le)
- 1 =
Let sin (2) y
=siny =
=sinfT} =
= sm(ﬁ) =
1

The range of principal value of sin"! is [_2—'"2] and sin (E) = -

[

b |

Therefore, the value of sin‘l(sing) is E.

Alternate Solution:
sin"1(sin x) = x

—m T

Provided x € |— —]
22

r

. . . T i1
J.we can write sm‘l(smg) =B

1 B. Question

Evaluate each of the following:

| [ . In ]
s | si—
i)

Answer
The value of sin%11 is _?1
.. The question becomes sin‘l(_?l)
Let sin‘l(_?l) =y
= -siny =~

y=3

= —sin(g) =

As, -sin(0) is sin(-6).

B |



~-sn(2) - ()

The range of principal value of sin"1 is (;—“g) and sin (?)

7mn

Therefore, the value of sin"1(sin A ) is?.

1 C. Question

Evaluate each of the following:
| T
S | sill—
i)
Answer
The value of sin':'—11 is 1
3] 2
.. The question becomes sin‘le)
- 1 =
Let sin (2) y

=siny =

= sin(g) =

[

b |

The range of principal value of sin"! is [_2—'"2] and sin (E)

3T

Therefore, the value of sin"1(sin - ) isg.
1 D. Question
Evaluate each of the following:

| . 13=m
su | sl ——

Answer

We can write (sin22T) as sin(qu — E)
7 7

As we know sin(2m -8) = sin(-6 )

So sin(qu - g) can be written as sin(g)
~. The equation becomes sin‘l(sing)

As sin~1(sin x) = x

- T

Provided x € —,—]
272

. — . T m
. we can write sin 1(sm;) =

1 E. Question

Evaluate each of the following:

1

-1

2



. -1 . T
s | sin
8

Answer

We can write (sinﬁ) as sin(qu + E)
g g

As we know sin(2m +06) = sin(0 )

So Sin(?,‘]T + g) can be written as sin(g)

. The equation becomes sin‘l(sing)
As sin~1(sin x) = x
Provided x € 3,3]

272

. we can write sm‘l(smg) ==

1 F. Question

Evaluate each of the following:
sin™ f

sin— & J}
| 8

Answer

As we know sin(-8) is -sin(6 )
- We can write (sin—-_) as —sin(ﬂ)
8 g

Now —sin(?) = —sin(zq-r + g)

As we know sin(2m +6) = sin(0 )

So —sin(zﬂ + g) can be written as —sin(g)

And —sin(g) = sin(?}

The equation becomes sin‘l(sin?)
As sin"1(sin x) = x

Provided x € }—“g]

.. we can write sin‘l(sin?) = ?

1 G. Question

Evaluate each of the following:
sin"Y(sin3)

Answer

sin"1(sin x) = x

Provided x € ‘2_“5] ~ [-1.57,1.57]



And in our equation x is 3 which does not lie in the above range.
We know sin[m - x] = sin[x]

~osin(m - 3) = sin(3)

. —m T
Also -3 belongs m[T’E]
- sin"1(sin3) = n-3
1 H. Question

Evaluate each of the following:
sin"1(sin4)

Answer

sin"1(sin x) = x

Provided x € ‘2_“5] ~ [-1.57,1.57]
And in our equation x is 4 which does not lie in the above range.
We know sin[m - x] = sin[-x]

-~ sin(m - 4) = sin(-4)

Also n-4 belongs in _2—'”%]
~sinl(sin4)=n-4

1 I. Question

Evaluate each of the following:

sin"! (sin12)

Answer

sin"1(sin x) = x

Provided x € ‘2_“5] ~ [-1.57,1.57]

And in our equation x is 4 which does not lie in the above range.
We know sin[2nm - x] = sin[-x]

~.sin(2nm - 12) = sin(-12)

Heren =2

Also 2n-12 belongs in _2—“2]

< sin"(sinl2) = 2m - 12

1 ). Question

Evaluate each of the following:
sin! (sin 2)

Answer

sin"1(sin x) = x

Provided x € ‘2_“5] ~ [-1.57,1.57]



And in our equation x is 3 which does not lie in the above range.
We know sin[m - x] = sin[x]

sosin(m - 2) = sin(2)

Also 1-2 belongs m[_z—“g]

s sin"1(sin2) = n-2
2 A. Question

Evaluate each of the following:

om
4

cos ! ]J Cos

Answer

As cos(-8) is cos(0 )
. -y _ fis
.~ (cos (T)) = (cos (Z))
Now,
s 1
cos (Z) =5
.. The question becomes cos‘l(%)
N

Let cos‘l(%) =y

V2

1
= cosy =7

T
v

= cos(f) -1
4 V2

The range of principal value of cos™! is [0,n] and cos G) = iz
J

Therefore, the value of cos1(cos (?)) is E

2 B. Question

Evaluate each of the following:

5w

o cos =
A4

cos

Answer

The value of cos (1—“) is =
X

Now,

.. The question becomes cos‘l(%;)
N

Let cos‘l(};) =y

Y

=Cosy =7
J



-1
= cos(n—f) ==
4 V2

3 -1
= cos(—“) S
4 v 2

The range of principal value of cos™1 is [0,n] and cos (ET“) = _—;
N

Therefore, the value of cos™1(cos (1—“)) is 3:“
2 C. Question

Evaluate each of the following:

47
3

-1

cos cos

Answer
4 o]
The value of cos (?ﬂ) is —

Now,

. The question becomes cos‘l(_?l)
-1(-1) =

Let cos (T) y

=cosy=—

= —cos(g) =

= cos(n—f) = =
3

B |

2 -1
:cos(?ﬂ) = =

The range of principal value of cos™! is [0,n] and cos (23—“) = '?1

Therefore, the value of cos1(cos (‘;—“)) is 23—“

2 D. Question

Evaluate each of the following:

137

o cos =
6

cos

Answer

The value of cos (ié'”) is \?3
Now,

. The question becomes cos‘l(%g)

Let cos‘l(%g) =y

=cosy =23
2



= cos(Z) = ¥
= cos(é) = -
The range of principal value of cos™1 is [0,n] and cos (E) =

Therefore, the value of cos™1(cos (i;)) is E.
2 E. Question

Evaluate each of the following:
cos™Y(cos 3)

Answer

As cos™1(cos x) = x

Provided x € [0,m]

.. we can write cos™1(cos 3) as 3.
2 F. Question

Evaluate each of the following:
cos 1(cos 4)

Answer

cos™1(cos x) = x

Provided x € [0,n] = [0,3.14]
And in our equation x is 4 which does not lie in the above range.
We know cos[2n - x] = cos[x]

. cos(2m - 4) = cos(4)

Also 2n-4 belongs in [0,1]

. cos1(cos 4) = 2n-4

2 G. Question

Evaluate each of the following:
cos1(cos 5)

Answer

cos 1(cos x) = x

Provided x € [0,n] = [0,3.14]
And in our equation x is 5 which does not lie in the above range.
We know cos[2m - x] = cos[x]

. cos(2m - 5) = cos(5)

Also 2nt-5 belongs in [0,m]

. cos™(cos 5) = 2n-5

2 H. Question

Evaluate each of the following:

cos1(cos 12)



Answer

cos™Y(cos x) = x

Provided x € [0,n] = [0,3.14]

And in our equation x is 4 which does not lie in the above range.
We know cos[2nT - x] = cos[x]

~.ocos(2nm - 12) = cos(12)

Here n = 2.

Also 4n-12 belongs in [0,1]

. cosl(cos 12) = 4n-12

3 A. Question

Evaluate each of the following:

-1
tan

T
Tan —

Answer
As, tan l(tan x) = x

Provided x € (_2—“ E)

= tanl(ta ng)

s
3

3 B. Question

Evaluate each of the following:

-1
Tan

om ]
tan —

Answer

Tani—11 can be written as tan(n — %)

T — _tant
tan(ﬂ—?) = tan?
= As, tan"l(tan x) = x
Provided x € (3,3)

22
tan-(tan2l) = =
7 7

3 C. Question

Evaluate each of the following:

—

—1 /T
tan fan —
6

Answer



Tm 1
The value of tan? =5
N

.. The question becomes tan‘l(iﬁ)
J

Let,
ta n‘l(\%) =y

~tony=(3)

J
s 1
~tan(3) = ()
. . -1 —T T E _
The range of the principal value of tan™" is (T’E) and tan(é) =
. The value of tan‘l(tan%ﬂ) is g.

3 D. Question

Evaluate each of the following:

-1 O
tan fan —
4

Answer

The value of tan? =1

. The question becomes tan 11
Let,

tanl1 =y

=tany =1

= tanG) =1

The range of the principal value of tan™! is (;—“g) and tanG) =1.

= The value of tan‘l(tan?) is E
3 E. Question

Evaluate each of the following:
tan™! (tan 1)

Answer

As, tan"l(tan x) = x

Provided x € (;—“E)

= tan~!(tanl)

=1

3 F. Question

Evaluate each of the following:



tan~! (tan 2)

Answer

As, tan~l(tan x) = x

Provided x € (;—“g)

Here our x is 2 which does not belong to our range
We know tan(m -8) = -tan(0)

- tan(6 -1 ) = tan(0)

- tan(2-mt) = tan(2)

Now 2-m is in the given range
~tan™l (tan 2) = 2-n

3 G. Question

Evaluate each of the following:
tan~! (tan 4)

Answer

As, tan"l(tan x) = x

Provided x € (;—“g)

Here our x is 4 which does not belong to our range
We know tan(m -8) = -tan(0)
~.tan(6 -n ) = tan(0)
~.tan(4-n) = tan(4)

Now 4-1 is in the given range
~tan™! (tan 4) = 4-n

3 H. Question

Evaluate each of the following:
tan~! (tan 12)

Answer

As, tan l(tan x) = x

»

Provided x € (_2—“ E)

Here our x is 12 which does not belong to our range
We know tan(nm -8) = -tan(0)

~.tan(6 -2nn ) = tan(6)

Heren =4

~ tan(12-4m) = tan(12)

Now 12-4n is in the given range

~tanl (tan 12) = 12-4m.



4 A. Question

Evaluate each of the following:

Answer
As sec™l(sec x) = x

Provided x € [0,11]—8}

. m
. we can write sec‘lsec(g) as .

4 B. Question

Evaluate each of the following:

2n
sec—
3

sec !

Answer

As sec l(sec x) = x

Provided x € [0,-{Z}

.. We can write sec‘lsec(zg—“) as 23—“
4 C. Question

Evaluate each of the following:

5w

gec D
4

seC

Answer

The value of secc—“) is -V2.

. The question becomes sec™1(-v2).

Let sec1(-v2) =y

=>secy=-v2
= - sec(g) =V2
= sec(n )

am
sec(2)
The range of principal value of seclis [0, n]-{g}
3my _
and sec(r) =-v2
. The principal value of sec™}(-v2) is 3:“

4 D. Question



Evaluate each of the following:

Answer

The value of secc—“) is 2

Let sec1(2) =y

=>secy =2

T
= sec(;)
The range of principal value of sec1is [0, n]—{g}
1-[ —
And sec(g) =2
.. The principal value of sec‘l(sec(?)) is g

4 E. Question

Evaluate each of the following:

O
5

sec”!

sS¢C

Answer

sec(i} can be written as sec(zﬂ = 3)

b= b=

Also, we know sec(2m -6 ) = sec(0)

SeC(Z‘]T - 3) = sec(";)

b= b=

. Now the given equation can be written as sec‘lsec(g)

As sec™l(sec x) = x

Provided x € [0,1'[]—8}

. we can write sec‘lsec(g) as
=]

Lu_l =

4 F. Question

Evaluate each of the following:

}

As sec(-0) is sec(0)
sec(27) = ()

The value of secc—“) is 2.

—

Ik’

sec”! ]J sec[ -

Answer



Let sec1(2) =y
=>secy =2

T
= sec(;)
The range of principal value of seclis [0, n]—{g}

1-[ —
And sec(g) =2
T

.. The value of sec‘l(sec(_—)) is =
3 3

4 G. Question

Evaluate each of the following:

As sec(-0) is sec(8)
sec( %) = see(2)

The value of sec(?) is V2 .

sec ! J sec[ —ﬁ
] 4

Answer

Let sec’}(-v2) =y

=secy =-v2
=- sec(g) =2
-sefr )

3w
sec(%)
The range of principal value of seclis [0, n]—{g}

and sec(%ﬂ) = -v2.

- —13 -
Therefore, the value of sec 1sec(Tﬂ) is f

4 H. Question

Evaluate each of the following:

—1 257
SeC——
6

seC

Answer
sec(?) = (%)
~. The question converts to sec‘l(%)

Now,



Let sec‘l(i_) =z

:)
-sed) = (3)

The range of principal value of seclis [0, n]—{g}

and secG) = (%)

- 25 . T
Therefore, the value of sec 1sec(%") is <.

wal

=>S€CZ=(

5 A. Question

Evaluate each of the following:

cosec ™!

s
cosec —
4

Answer
cosec 1(cosec x) = x

Provided x € i,E]-{O}
2 2

. we can write cosec‘l(cosec(g) - E

5 B. Question

Evaluate each of the following:

3m

cosec™| cosec

Answer

cosec 1(cosec x) = x

Provided x € _2—“,5]—{0}
. _ 3

. We can write cosec 1(cosec(£) _ 3

5 C. Question

Evaluate each of the following:

=] oT
Cosec | cosec
Answer
61T . ™
cosec (—) can be written as cosec (n + 7)
=1 =1

cosec (‘]T + 3) = —cosec(?)
=1

=]

Also,

-cosec(8) = cosec(-6)



T

) = cosec(2)

Now the question becomes cosec‘l(cosec(i))

= -CosecC (

cosec 1(cosec x) = x

Provided x € i,f]—{O}
22

. we can write cosec‘l(cosec(i) ==
=] =]

5 D. Question

Evaluate each of the following:

11z

cosec™| cosec

Answer

The value of cosec(l—:}“) = -2.

Let,
cosec™l-2 =
y

= cosecy = -2
= -cosecy =2
= -cosec — =2

5]
As we know cosec(-0) = -cosecb

'I'[ —Tr
.. -COSec — = cosec (—)

6 6
The range of principal value of cosec™! is _2—“% -{0} and
cosec (?) =-2

Therefore, the value of cosec‘l(cosec(l—:T)) is ?.
5 E. Question

Evaluate each of the following:

13w

cosec™| cosec

Answer

The value of cosec(%“) is 2.

. The question becomes cosec™1(2)
Let,
cosec}(2) =y

S.cosecy =2



1-[ —
= cosec(g) =2
The range of principal value of cosec™! is _2—“% -{0} and
1—[ —
cosec (E) =2

. T
Therefore, the value of cosec‘l(cosec(ig)) is —.

5 F. Question

Evaluate each of the following:

}

As we know cosec(-0) = -cosecb

On

cosec” {CDS ec

Answer

cosec(ﬂ) = —cosec(ﬂ)
4 4
om . n
-cosec (T) can be written as —cosec(zq-r + 1)

Also,

cosec(2n+6) = cosecO

. my_ s

o —cosec(qu + 1) = cosec(é)

As we know -cosec(0) = cosec(-6)

. my _ —T

o —cosec(z) = cosec(T)

Now the question becomes cosec‘l(cosec(?))

cosec l(cosec x) = x

Provided x € _2—“,5]—{0}

.. we can write cosec‘l(cosec(?) =
6 A. Question

Evaluate each of the following:

B
cot—
3

-1
cot

Answer
cot™1(cot x) = x

Provided x € (0,m)

- cot™(cotD) =2,
3 3
6 B. Question

Evaluate each of the following:



-1
cot

4m ]
cot

Answer

cot®™ can be written as cot(n + E)
3 3
we know cot(m +6 ) = cot(6)
. my _ i
con(n+2) = o)
Now the question becomes cot‘l(cotg)

cot™1(cot x) = x

Provided x € (0,m)

-~ cot-I(cotT) =,
3 3
6 C. Question

Evaluate each of the following:

| On
cot | cot

Answer

The value of cot% is 1.

.. The question becomes cot™(1).
Let cot™}(1) =y

=coty =1

= cotG) =1

The range of principal value of cotlis (0, m)

and cot(g) =1

. The value of cot‘l(cot?) is E

6 D. Question

Evaluate each of the following:

197

cot ™} cot ==
6

Answer
The value of cot? is V3.
. The question becomes cot™1(v3).

Let cot1(v3) =y

=>coty =+v3



— 1—[ —
= cot(g) =3
The range of principal value of cotlis (0, m)

and cot(g) =3

. The principal value of cot‘l(cot?) is E.

6 E. Question

Evaluate each of the following:

}

8w

cot ™! ]J cot

Answer
cot(-0) is -cot(0)
.. The equation given above becomes cot‘l(—cotsg—“)

8n =
cot— = —.
3 V3

Therefore

Let cot‘l(Tla) =y
;

1
=>coty=73
v

= cot(f) S
3 Vv a

The range of principal value of cot™lis (0, n)

and cotG) = \—13

. The value of cot‘l(cot%"") is g

6 F. Question

Evaluate each of the following:

}

21

cot ™ ]I cot

Answer

cot(-0) is -cot(8)
.. The equation given above becomes cot‘l(—cot$)

21
cot=—"=1.
4

21
= -cotT11 =-1.

- we get cot™1(-1)
Let cot1(-1) =y

=coty =-1



= - cot(g) =1
o)

_ 3w

= cot()

The range of principal value of cotlis (0, m)
and cot(%“) =-1

—21n
4

. The value of cotl(cot—=) is 3:“

7 A. Question

Write each of the following in the simplest form:

_ a
cot 1{(— Jx|>a

WX —a”

Answer

Let us assume x = a sech
0= sec‘l'—: ..(1)

.. we can write

cortf—_|
yaZsec®B-a?
= -1 a

Cot {\ az(seczﬁ—lj}

yaZtan®@

= cOt-l[L}

atan@

= Cot‘l[L}T

tanB
= cot(cotd )

= 0.
From 1 we get the given equation simplification to sec'l'—: .

7 B. Question

Write each of the following in the simplest form:
tan_l{x +4f1+x? :-.x eR

Answer

Put x = tan6
=6 = tan1(x)

tan-1{tan® +\1+tan20}



= tan"1{tan® +\/sec20}

= tan"1{tan® +sech }

=tan_1[smﬁ+ 1 }
cos8 cosB

_ tan_]{1+sinﬁ}

cosB

. N B 8 . .8
SinG =2 x sin X cos3 ,C0S0 = coszg— 511125

.8 @8 . .8 -8
®sin—¥cos—+sin“—+cos —
1 2
= tan_ 2 - 2 2
I
cos?——sin®=
z z
) a2
1 sin—+cos—
= tan” o £

g .8 g8 . B
cos——sin-) ¥(cos-+sin-
2 2 2 2

1 (singﬂzosg)
= tan g

cos——sin—
2 2

Dividing by cosg we get,

sin- cos=
COS= v:'osg
—~ 2 = 24

) 2}

(_51n9+c059)

cosZ CosZ
[}
t 1 1+tan_—
= tan —ﬁ
1-tan—
2

™ [}

-1 tan—+tan_—

= tan _41'[_29
1—tan—tan—

4 2

tanx+tany

= tan’!

tan(x+y) =

l-tanxtany

- o i(in(2+)

+

=
r | @

From 1 we get

tan L1k

2

4

tan"lx

Therefore, the simplification of given equation is E + ;

7 C. Question
Write each of the following in the simplest form:

-1) 1+x° —x|-.XER

tan

| |
Answer
Put x = tan®

=0 = tan1(x)

tan-1{,/1+tan26-tanod }



= tan"!{\/sec2p-tand }

= tan1{secH -tand }

_ tan‘l{ 1 sinE}
cos8 cosB

_ tan_]{l—sinﬁ}

cosB

. N B 8 . .8
SinG =2 x sin X cos3 ,C0S0 = coszg— 511125

. -8 ) )
1 sin“—+cos ——2Xsin_Xcos—
= tan_ 2 2 2 2
29 inz?
COs“-—5In“—
2 2

2

( ., B 9)
sin——cos—
2 2

g .8 g8 . B
cos——sin-) ¥(cos-+sin-
2 2 2 2

_ (sing—cosg)
=tan Nl gz 2/

cos—+sin—
2 2

= tan’!

Dividing by cosg we get

sin- cos=
COS= v:'osg
—~ 2 = 24

=tanl{—2—=
( 51n;+C05;)
COSE COSE

a8
1 tanE—tan—
tan _41'[_29
1+tan—tan—
4z

tanx—tany

tan(x-y) =

l+tanxtany

- i (an(2-)

=
|
r | @

From 1 we get

tan L1k

2

T
4

Therefore, the simplification of given equation isg

7 D. Question

Write each of the following in the simplest form:

_J 1+x° -1

tan” T2l x 20
[ X

Answer

Assume x = tan®

tan™

2

1

x.



= tan-11¥ 1+tan?6-1
tan®

. 58 . .8 8
Cos6=1-2 sng and sinB = 2 x sm;x cos>

Y
=1-cosb =2 sm25

1 2 sin22

=tan"y—3g*5
2xsin—xcos—

2 i

i

_1|sinz
= tan [—?g.]
a
= tan‘l(tana)
8
2

But ® = tan"1x

. 8 tan"tx

2 2

-1
Therefore, the simplification of given equation is 22 —*

7 E. Question

Write each of the following in the simplest form:

_J 1+x° +1

tan T Tl x 20
[ X

Answer

Assume x = tan6

= tan-1 Y 1+tan?B+1
tan®

n-1ysec?8+1 'sec?B+1
tan®

tan-!

secB+ 1}
tanB

1
tan® [m ]
cos8

tan- 1[1+cosa}

sin@




8 , .8 8
CosB6 =2 coszg -1 and sinB® = 2 x sin X cos>

8
=1+ cosO =2 coszg

tan_l 2 cosZE
= _9'_2—9
2xsin—xcos—
2 2

]
= tan‘l[ﬂ?]

sin—
2

= tan‘l(cotg)

{29 (-3
= tan‘l(tan_?e)

But 8 = tan™1x.

. —B —tan 'x

2

—tan 1x

Therefore, the simplification of given equation is

7 F. Question

Write each of the following in the simplest form:

[=4]

—1 —X
tan

—a <X -<a
d+-X

Answer

Put x = a cos6

= ta n_1 a—acosB

a+acosB

a(l-cos8)
a(l+cos8)

= tan’l

(1—cosB
(1+cos8

= tan!

M

Rationalising it
tan_l (1—cos8) % (1—cos8)
(1+cos8) (1—cos8)

(1—cos8)?
{1—cosZ@)

= tan™l

(1—cos8)2

n?8

- tan_l(l—cosa )

sin 8

= tan™!

00

. 58 . N 8
Cos®=1-2 S|n25 and sin® = 2 x sin x cos

. 50
=1-cosb =2 smza



ta n_l 2 sinZE
2xsin—xcos—
2 z

. 8
= tan‘l[ﬂé]

Lo Fo
2

= tan‘l(tang)

8

2
But @ = cos‘li

. The given equation simplification to cos‘li

7 G. Question

Write each of the following in the simplest form:
-1 J X
fan { ——F=—=."a<X<a
la +4a” —x"
Answer

Assume x = a sin®

_ asin@
a+ya?-asin? 8

]_ asin@
a+,/ 32(1 5in?@ )

_1( asin® }
a+acosB

tan- 1[ sin® }
1+cos@

— 1 asin@
tan” [a+\,az(coszﬁ}

] . -f . .8 g 8 . -8
Cos 6 = c0525 - sng and sin® = 2 x sin X cos; ,coszg + sng =1
. B a
-1 2¥sin—¥cos—
= tan ] 92 Zg o
cos?= +sin®—+cos®= -sin®—
2 2 2 z

_ tan_l[ZXSinEx::osE]

2cos?=
z

tan‘l(tang)

8
2

But © = sin‘le)

. The given equation simplification to sin‘l(f) .
a

7 H. Question



Write each of the following in the simplest form:

o xeI= |
| V2

Answer

<X C—=

IJ|

1
Assume x = sinf

= sin-1 sin@+y/1-sin®
\-"E

. _1(sinB+cos@
= Sin _
\-'2

. 1 . 1
= sin 1[:51118 +—_cosﬂ}
V2 V2
- m ., . T
= sin 1[-:05151119 + sin- cos Ei}

sin(A+B) = sinAcosB+cosAsinB

.. The above expression can be written as
= Sin'l[sing+ B}
=-+8
4
But 8 = sin"1x
. the above expression becomes E +sin~1x.
The given equation simplification to E+sin'1

7 1. Question

Write each of the following in the simplest form:

1 J.wfl—x —\/'l—_x

sin ]\ . LO=x <l

Answer
Put x = sin26
And we know sin?0 +cos26 = 1

By putting these in above equation, we get

[
] y sin?B8+cos® B+sin 2B+\JI\."sinzB+cosza—sin 28
sin™

2

\/ (sin B+cos8) 2+\ (sinB—cos8)2 }

— sin 1{
1

= sin”

sin‘l[z s:na}
2

sin B+cosB+sin 8- cosﬁ}

= sin"1(sin 0)



=9

But @ = isin‘lx
.. The given equation simplification to gsin‘lx.

7 J. Question

Write each of the following in the simplest form:

. J 4 1-x
s11 l-ftan L s

L.

Answer

Put x = cos 6

= sin‘1(2tan‘1( 1-cos® ))

l+cos8

1-cosd =2 sinzg and1l + cos® =2 coszg
= sin"}(2tan!

= sin‘1(2tan‘1( |tan2 g))

= sin‘1(2tan‘1(tang))

= sin"}(2 x g)

= sin"1(9)

But 8 = cos 1x

. The above expression becomes sin~1(cos 1x)
Exercise 4.8

1 A. Question

Evaluate each of the following

sin[ sin™ ]
25

Answer

Let sin™!— =y
= =)

Where y & {0_

2| A



. 4 7 7 — o4 7
= 5111[ sin _J = — substituting v = sin 12
25 25 ’ 25

1 B. Question

Evaluate each of the following

. 45
sl cos  —
13
Answer
45
Let cos™ — =y
13

2] A

< -
= cosy = — where yg| 0, |
13

. . 45 .
To find : sm[cos IEJ =smy

As sin0 + cos?0 = 1

= siny =+4/1-cos"y

-
rsyel0]
= siny =
®siny=
=siny=
: 144
=sny=,[—
169
1"'!
=siny=—

5 12
ﬁJl‘E

1 C. Question

) -1
= su{cc-s

Evaluate each of the following
. [ 424 J
sin| tan - —

Answer



24
Let tan_l —= y

o] A

24 1
=tany = — where ye| 0, |

. 124 .
To find : 5111[ tan — J =siny

As 1 + cot?6 = cosec?6

2

=1 + cot?y = cosec?y

Putting values

= 1—[ —J =cosec’y
¥

49 1
= | +r—=
576  sin“y
.2 576
. 24 | T |
=>51n§,.-':"—‘q = 0.:|

. 124 24
= 51| tan - = —

1 D. Question

Evaluate each of the following
. [ . 1?‘}
S| sec " —
8
Answer

Let sec_l —=y

3| A

= secy = E where y & |:0‘ |

-

To find : sin[ sec_IEJJ =siny

1

secy

Now, cosy =

8
= Cosy=—

— |
NOW, Sl }.' — 1_COS_ }.' Where } = |:0_: |



=siny=
289
: 15
=siny=—
[ _11?] 15
= sin| se¢” — |= —
8 17

1 E. Question

Evaluate each of the following

3
cos™! —J

cosec

Answer

3
Let cos™ = = y
3
= cosy =— where y 2| 0,
Y73 )

To find: cosec| cos™

Lh |

J = COs5eCy

As sin20 + cos20 = 1

= siny =.fl—cos’ y Where y [0-

| A

SNy =

= COsecC

_13]
cos” — | =
q

5
4
1 F. Question

Evaluate each of the following



12
. -1 1=
SeC| sm o —
)

Answer

. 12 |
Let sin —=y where Ve 0—|

A
=siny=—

, . 412
= To find : sec[sm I_J =secy

As sin20 + cos?0 = 1

= cosy =4/l —sin’ y Where y & [

l“-.)|,‘_'|

= cosy
144
=2cosy=,1-—
169
25
= Ccosy =
169
5
= COSY
13
1
= secy =
COS Y
13
= gecy =—
5
[ 1 12} 13
= sec| sin  — ==

1 G. Question

Evaluate each of the following

-1 SJ
cos” —
17

Answer

tan

Let COS_l E =y where y |:0 — |
17

8
= Cosy=—



.8

To find: tan| cos™ 1__'J = tan y

= As 1+tan26 = sec?6

f S N T
= tan }r — sec” }.' _1 where }-' = |:0_: |

= tany =
2 tany =
289
= tany = —1
64
225
= tany =
64
15
= tany =
8
4 8 J 15
= tan| cos — |=—
17 8

1 H. Question

Evaluate each of the following

43
cot| cos —
5
Answer
3 T |
Let cos™12 = v where v & |:0— |
5 ’ 2
3
= Cosy = —
5
. a3
To find: cot| cos < =coty

= As 1+tan26 = sec?6

— .o
= tan -}.— — sec” -}r _1 where } = |:0_: |




= N
coty 9

3
=coty =—
4

_13] 3

= cot| cos — |=—

5 4

1 I. Question

Evaluate each of the following
21 24]
fan " —

Answer

cos

24
Let tan ™! —=Y

24 1
= tany =— where y = | 0, I

| A

LY B

To find: cos tan_l %J =Cosy

As 1+tan20 = sec?6

=]l+tan"y =sec”y

~secy = ql/l +tan” y Where y £ {0. |

| A

25
= secy =
1
= COSY =
secy
= COSy = —
- ]

= CO0s5

24 7



2 A. Question
Prove the following results:

4 2 7
-1 -1 = /
tan| cos” —+tan — |=—
5 3

Answer
1 4 12
Let cos ™ —=x and tan ‘= = y
5 3
4 2
= cosX =— and fany ==
5 3

T
where X, v £ {0__
- -

Now, LHS is reduced to : tan(x+y)

tanx +tany ,
> tan(x +y)=—— ..eq (i)..
l-tanx.tany

5 'E
AS tanx =+fsec’ x —1 Where x E{O‘: |
1
= tanx = 1
cos™ X

kS

= fanx =

3

= fanx = —
4

Now putting the values of tan x and tan y in eq(i)

|

= tan(x +y)=

Bt LIVE [
Lt
—

(33

|

= tan(x +y) Sl
= RHS
2 B. Question

Prove the following results:

1

-1
+cot

. 3
cos| sin —
3

l}llr‘)_;

6
s5J13



Answer

Let 5j11_1 —x and cgt_l =V

b |

Lh |

= sinx == and coty =

'J’ll'._u

bd |

o
where x.v {0_— |

’ 2
Now, LHS is reduced to : cos(x+y)

= COS(X +¥)=C0SX.COSy —smnX.siny ..eq(i)

- T
AS cosx =+l —sin® x Where x & {0-: |

= cosx =

= cosX = J1—

>
()]
o
L]
(=}
o
(4]
[ ]
g
I
e
|
L]
<
—
[}
-
s
>0
D
-
D
el
M
1
-
2] A

=

= cosecy =

-

1

COosecy

= siny =

-

J13
3 |
= cosy =41 —sin” y where y & |:05 |

= siny=

2 cosy =

Putting the values in eq(i),



= RHS
2 C. Question

Prove the following results:

.1 3 a1 3] 63
tan| sin. —+cos — |=—
13 5 16
Answer
. 1 5 43
Let sin =x and cos — =y
13 5

. 5 3
= sinX =— and cosy ==

where X,y £ {0.

(=

Now, LHS is reduced to : tan(x+y)

tanx +tany _
> tan(x +y)=—"— ..eq(i)
l-tanx.tany

AS cosx =+l —sin’x Where x e {0-

2 A

A
= COSX = —
Similarly,
. 2 _ :T_
siny =4f1-cos”y Where x &/ 0, |
: 4
=siny=—
5
sinx siny
fanx = and tan Y=
CosX CosY
5 4
= tanXx =— and tany = —
2 3

Putting these values in eq(i)



= tan(xX +y)

3
= tan(x—y):ﬁ—

= RHS
2 D. Question

Prove the following results:

: 43 .4 5% 63
S| Cos  — =S =
5 13 65
Answer
13 . 15
Let cos 1_:}; and sin 1_:}-'
5 13
3 . 5
= COSX == and siny = —

T
where x.v € {0.—
- -

Now, LHS is reduced to : sin(x+y)

= sin(X +y )=smmX.cosy +cosx.siny ..eq(i)..

As sin“x +cos x =1

= sinx =+1—cos”x Where x e {0-

2 A

= sinx =
= sinX =
Similarly,
] _ :T_
cosy =+fl-sin"y where x &} 0,

A
= cosy=—
3

Putting these values in eq(i)

2 5

= sin(x+y)= 3

13

r-"l'{-"
| =

,_.
]



2sin(X+y)=—

= RHS

3. Question

Solve: Cos(_sin"l x) =

|

Answer

A. Letsinlx =y

T .
Where v {0_— | because “cos y” is +ve
- 3

=siny =X

where “x" is +ve as y & [[L

2| A

As sin2y+cos?y = 1

2 :T_,
= cosy = 1 —sin” y where y & [0_: |
2 cosy=+1—-x"

According to the question, cos(sin_l x) =

1
= cosy =—
6

= §1-x° :é

Squaring both sides,

=1-x" =

4. Question
Solve: cos[i sin ! (—x )_I =0

Answer

A. Let Sin_l(—x} =y where y {_ '

2] A
2] A



= siny =—X
According to question

= cos2y =0
=1-2sin"y=0
=1-2x"=0

:XEZ

b | —

1
= X =T —
J2
Exercise 4.9

1 A. Question

Evaluate:

COS|:Si11_1 (——J |
25

Answer

25

oA

where x E|:——.0 |
S
= sinx =——
25

To find: cos|:s1'n_1[ —J—J | =C0s5X
25

As sin2x + cos?x = 1

2 cosx =+fl-sin"x * XE

49
= cosX =,J]1—
625
57
= CcoSX =
623
24
= oSN =—
25
4 7] 24
= cos|sin | —— |:—
25 25

1 B. Question



Evaluate:

a4 5
sec| cot - |
12
Answer
a4 5
Let cot | — |=X
12
T
where x = __ch
2
5
= CcofX=——
12

5]
To find: sec|:cot_1[—_J I:SECX
12

AS ]1+itan"x =sec X

-1
= S€C |:C'DT

5 13
_EJ|:_?

1 C. Question

Evaluate:
4 13Y]
cot| sec e |
5
Answer
-1 13 T
Let zec ——|=%x wherexe| —. 7
5 2
13
= secx =—

r_h|



J |=COTX

L)

1

IJ-||

To find: cot {sec_l [ —

As1+tan"x =sec” X

~ tanx = —fsec x—1

= tanx ——
12

= fanx :—?
5

= cotx = _1_"'!

af 13 5
=cotysec | —— || =——
[ 5 J 12

2 A. Question

Evaluate:
4f 7
tan{cos ——J |
25
Answer
1 7 T
Let cos | —— |=x wherexe| —.
25 2
= COSX =——
25
To find: tm{cos"l —’—J |=tanx
25

AsS1+tan”x =sec” X

= tanx =—yfsec x—1 3 XE
— 1

1 —

- \
—. T
-

= fanx =

Cos™ X




2 B. Question

Evaluate:
4f 12Y1
cosec| cot - |
3
Answer
-1 12 ™ )
Letcot"| — |=X where x| —. 7
-3
12
= cotx =——
5
o 12Y]
To find: cosec| cot™ —?J |: cosecx

As 1+cot"x =cosec X

] E ‘
= cosecx =+l+cot"x *X E[:‘EJ

-

= cosecx =

1

3

= COSecCX = ?

{ o 12y 13
= cosec| cot ——J |: —u
5 5

2 C. Question

Evaluate:

cos| tan —— |
4

Answer

3
Let Tan_l[ ——J =x where x = |:—
4

3
= fanx :—1

_ 3
To find : cos| tan 1[—1J |:COSX

As 1+itan"x =sec X

® secx =+fl+tan-x 95 XE[_

| 3

.0|



= COSX =
secx
4

= COSX = —
5

= cos| tan | —— | |=
4

(RN

3. Question

, 4 3 1 5
Evaluate: sin| cos ——J—co‘r —
5 ]

Answer

A. Let cos™

.TE|

To find: sin {c@s_l

-

—%J—cot_l[—%]:lz sin(x+y)

= sin(X +y )=sInX.cosy +cosx.siny ..eq(i)

As sin“x +cos x =1

= sinx =+l—cos"x 9 XE[ .

| A

= sinx =

= sinxX =
Also, 1+cot”y = cosec”y

= cosecy =qfl+cot”y

= cosecy




= Ccosecy = —
3

1

cosecy

= s5iny =

A
=siny=—

= cosy =coty.siny
5 12 5

=0y =——xX—=—
12 13 13

Putting these values in eq(i)

. 4 5 3112
= sm(x—}-'}:?[—EJ—[—gJ.E

56

= sin(x+y)= s

: -1
= su{cos

Exercise 4.10

1 A. Question

Evaluate:
.13 a4
cot| sin~ = +sec” —
4 3
Answer
.13 13
= cot| sin”T = +cosT —
4 4
[._ Ry
sec X =cos  —
X
We know, sin~'x +cos x ==

o | A

Il
L]
o
—

I

=0
1 B. Question

Evaluate:

. y 1
sin| tan X +tan —J x<0
X

Answer



sin(tan_l X +(cot'x — :1:))

pr—,

1 .
tan”' B =cot™! 6 -7 forx = OJ

‘“J

_ _ T
. tan"' B < cot le:_J

S
. T
sin| ——
.

. T
—sin—=-1
3

-

sin

2] A

pr—,

1 C. Question
Evaluate:
: —1 11 :
sin| tan” X +tan  — | x>0
X

Answer

= sin(tan_l X +cot™! x)

1
[ tan”' B =cot™! 6 forx = OJ

. T
= sm—
A

-

_ _ T
['.*tan 16+ cot 1E)::J

=1
1 D. Question

Evaluate:
cot(tan_l o +cot™} 0'_)

Answer

o
3

~ _ T
['.‘tan 16+ cot 182;}

= cot

=0

1 E. Question



Evaluate:

-l -1
cos(sec” x +cosec” x) [X[=1
Answer

a1l 41
cos” —+sin” —
X X

= CO0s

1

1 41
[ rsec '@ =cos = and cosec '@ =sin~ —J
6 5]

= C0S—
>

. -1 -1 m
['.*SlIl 6 +cos Bz:J

=0

2. Question

T . . I
2 If cos™'x +cos™! v = =, then find the value of sin~!x +sin 1;,.-.
— J

Answer

1 1

_ _ T
A . cosT X+cosT y=—
4
T .4\ (m .4 ) =
=| ——sin X |+| ——sin" ¥y |=—
2 2 4
. _ T
['.‘sm 0+ cos IBZ—J
3
- . -1 .1\ _ T
T—(sin  X+sin "y )=—
' 4
o cin-l S N T
sin” X+sin” y=7T——
4
c 1 .1 3m
=8N X+sin Y=
4
3. Question
L . T _ _ T ,
If sin~?x +sin 13_,-' —_ and cos'x —cos 13_,-' = _, then find x and y.
3 6
Answer
L . T .
A sin7'x +sin7ly zz -..eq(i)

1

cos "X — cos_l

y =2 ...eq(ii)

Subtracting (ii) from (i)



= (il -1 il Ay _ T T
(sith " X—cos X)+(sin"y+cos y)=———
3 6
. 1 Ty =«
=(sm X-—-cos X)+| —|=—
2 6
. -1 -1 T
['.*SlIl 6 +cos BZ_J
3
T -1 -1 T
=| ——C0S X |—COS X=——
2 3
5w
= 2¢cos'x =
6
-1 St
=08 X=
12
5w
= X =CO0S| —
12
T
= X =C0S| —+—
4 6
T T . T .7
= X =C0S$—.COS— —SIN —.S1 —
4 6 4
L L3 11
22 22
J3-1
=>XZ

4. Question

1

3 g .
If cot] cos™ — +sin IXJ =(), then find the values of x.
5

Answer



13 |
A. cot| cos ;—sm XJ:O
_13 .1 T
= C0s —+sm X=0m+—
5 2
| T _13
=5 X =|nNT+— |—¢cos —
2 5
. T _13
= ¥ =sl||nmT+— |—cos —|
2 5
. T _13 TE‘ . _13‘
= X =sI| 0T+ |COS| COS™ — | —COS| N+ [si| cOS —

(using sin(A-B) = sinAcosB - cosAsinB)

=X==

|

[ The value of sin [ nm+ ngwitches between land — lJ

-

5. Question

-
o] o] —

T P -1 ":ﬂ.Findx
(.5111 X) (COS X) 36

Answer

A. Using a2+b? = (a+b)? - 2ab

= (51'11_1 X +cos™ x) —2sin'xcos i x = ?

T .4 ) 17n
——sinT'x |=
>

—

T .
= _2sin"'x
A4

Substituting sin“1x with ‘a’

2 2

9 - 17=w
=2a-—ma+—=
. 36
] ..",2
=2a° —ma-— =0

= 18a’ —9ma—27° =0

Using quadratic formulae

(—b: b3—4ac)
= 2a
. X:ﬂ:(‘):lﬁ)



6. Question

1

. | -1 .
5111[ s11 = +Cos XJ =1. Find x
Answer

A. sin

1 4
511 lz—cos IXJ:I

= sin"!—+cos I X =nmw+ -

r.}lli—‘
[SR=

-1
=C0s X =

TE] .1 1
nm+— | —5s1m  —
2 5

—

T - _11
= X=C05 | AT +— |—sl1 —I
2 5

-

T .y 1 :
= X=CO0s IlTE—:JCOS[SH] EJ—SIH[H‘I—

(using cos(A-B) = cosAcosB + sinAsinB)

r.}lli—‘

i

(The value of sin

-

7. Question

1 1

. T _
Solve: sin"'x =_+cos X
6
Answer
1 T 1

A sinT x = E_ cos X

i

. -1
=sin X =

T .1 ‘
——Ssm X
-

A

| -1 T
[':sm 6 +cos 8::J

o
. 27
= 2sin"'x = :

c 1 T
= s1m XZ;

4

-

B : . -1
S| sin
-

nmw+ —J switches between 1 and -1)
i ]

:



=y =

5
8. Question

- 1
Solve: 45in'x = —cos ' x

Answer

A Aot _ -1
s X=m—cos X
T

Z sinT'x
3

-

.1
=>4sm X=m—

= 3sin " x =-

o | A

c 1 T
= 51 X:E

=>XZ

1 | =

9. Question

27
Solve: tan~'x + 2cot ' x = —.
3
Answer
A
_ _ 27
A tan'x +2cot7lx ===
3
27

—1 T -1
= tan x—ﬁ[:—tan X

a—

~ _ T
['.‘tan 16+ cot 18::]

= tan "' x =-

= x =3

10. Question

r_u|'_-|

: -1 -1
Solve: §tan~'x +3¢cot™ x =27

Answer
A Stan~'x +3cot ' x =27

i

-1 1
= Stan X +3 —tan X |=27m

o | A

-

a—

_ _ T
['.*tan 16« cot 1E):—]



= 2tan " 'x =-

2 A

1

_ s
= tan~ X =—
4

=x=1

Exercise 4.11

1 A. Question

Prove the following results:

11
13

1

+tan~ =tan"~

a1
tan -

WO | b2

Answer
Given:- tan‘l(i) + tan‘l(i) = tall_lﬁg)
7 13 o

Take
LHS

= -1 E -1 _i
tan (7)+tan (13)

We know that, Formula

X+
tan"'x +tan !y = tan! U
1—xy
Thus,
1 1
—tan—1] T3
=tan (—Lﬁi—)
1—=x—
7T 13

13+7
— -1
= tan (;%ér)
91
- 20
=tan~! (—)
a0

=tan~?! (E)
9

= RHS

Hence, Proved.
1 B. Question

Prove the following results:

412 44,63
11 T —4+C0s  —+tan  —=T
13 5 16

Answer

Given:- sin‘l(E) +cos12 4 tall_l(ﬁ) =n
13 5 le

Take

LHS



_— 12+ ‘14+t _,,63
sin (13) cos™" ¢+ tan (16

We know that, Formula

= -1
5In” "X = tan (—)
V1 —x2

-1

. V1—x2
Cos” "X = tan _—

Thus,

2

1z | 4
_ —_ _ —\= _1 .63
=tan~1 ——— |+ tan 1N 4(5) +tan 1(5)

I *

1-{— 5

N 13

=tan~1(>) + tan‘l(z) + tan‘l(ﬁ)

We know that, Formula
Xty
1—xy

1

tan~'x +tan~ 'y = m + tan™

Thus,

J.ZE.

—Tr+tan‘1( Sz 3)+tan‘1( )
5 4

— -1, 63 -1,.63
=1 +tan~ " ( 16)tham (16)

We know that, Formula

tan™}(—x) = —tan"'x

= —tan (=22 -183
T—tan ( 16)+tan (16)

=T

So,

sin‘l(E) + -:-::os‘li + tem‘l(g =T
13 5 16

Hence, Proved.

1 C. Question

Prove the following results:

1 _1
tan— — + tan
4

= sin~}

4_1‘ —
N

Ok

Answer

Given:- tan‘l( )+tan‘1( )= 5111‘1( =)

Take
LHS

1 2
tan (=) + tan" (=
an (4) an (9)



We know that, Formula

1X+y

tan'x +tan 'y = m+tan”

Thus,
1,z
=tan~ ! 4%,
1—=x=
4 g
ﬂ
=tan~l2s
as
E
=tan~!Zs
36
=tan~12
2
Let,
tanf L
anf = —
2
Therefore,
. B l
sinf = —
V5
So,
1
0 =sin"t—=
V5

= tan‘l(é) = sin"}(=) = RHS
Vo

1

1 2
-17_ “1¢7y il
tan (4) + tan (9) sin [:\E)

Hence, Proved.

2. Question

"
Find the value of tan_l[ —J — tan_l
‘._.'

X -y ‘
X+y
Answer
: . ] —1,%7¥
Given:-tan™" (7)) — tan™ ()
Take
X X—y
tan (-) — tan }{(——
(yJ oy yJ
We know that, Formula

1 X7
1+xy

1 1

fan "X —tan "y =tan"

Thus,

-1 3_(;{_:;)

= tan m



—1 x(xty)-y(x-y)

= tan
yix+y)+x(x—y)

1 x2+y?

=tan™ 5

=tan~'1

— X — X—y T
an (y) an (x+ y) =3
3 A. Question

Solve the following equations for x:

_ _ 3T
tan~! 2x + tan~! 3x :11:1:—?

Answer

Given:- tan™*(2x) + tan~*(3x) = nm + %ﬂ

Take
LHS

3
tan™1(2x) + tan"2(3x) = nm + =

We know that, Formula

X+y
tan'x +tan~ 'y =tan™!
1—xy
Thus,
_ 2X+3x an
stan"!——— =nw+—
1-2xx3x 4

_ X am
stan™! —— =nm+ =
1-6 4

%z
-2 = tan(nm + 3—ﬁ)
1-6x2 4
5x
1-6x2 -1

= 5x = -1 + 6x2
=6x2>-5x-1=0
=6x2-6x+x-1=0
=26X(x-1)+1(x-1)=0
=(6x+ 1)(x-1)=0
=6x+1=00rx-1=0

1
=x=—gorx=l

Since,



V6 V6
So,
X= —é is the root of the given equation
Therefore,
1
X="%

3 B. Question

Solve the following equations for x:
_ _ 1 8

tan~'(x +1)+tan™'(x —1) = tan 1%—1

Answer
Given:- tan™!(x+ 1) + tan!(x— 1) = taIl'l(%)
Take

LHS

8
tan"}(x+ 1)+ tan }(x— 1) = tan‘lﬁ

We know that, Formula

X+
tan'x +tan~ 'y =tan™! v
1—xy
Thus,
1-{x+1)x(x—-1) 31
-1 X i1 8
= tan™ e =tan o
—tan™l——— = tan~! =
1-x2 +1) a1
2x 8

:1—x2+1]=31
= 62x = 8 - 8x%+ 8
=4x2 + 62x-16 =0
=6x2+31x-8=0
=24x(x +8)-1(x+8)=0
= (4x-1)(x+8)=0

=26Xx+1=00rx-1=0



So,

X= i is the root of the given equation

Therefore,
1
X=—
4

3 C. Question
Solve the following equations for x:

tan~'(x —1)+tan™ X +tan~' (X +1) = tan ' 3x

Answer

Given:- tan !(x— 1) + tan™}(x) + tan~(x + 1) = tan™! 3x)
Take

tan™(x— 1) + tan (%) + tan~*(x + 1) = tan~* 3x

We know that, Formula

X+
tan"'x +tan~ !y = tan™? o
1 —a3y
Thus,
> tap 1 BEREETD tan™(x) = tan ! 3x
1—(x+1)x(x—1)
-1 2x -1 _ 1
= tan D +tan”*(x) =tan " 3x
23
= tan~' —— + tan"!(x) = tan™! 3x
1-x=+1

23
= tan~! 2_22 +tan"!(x) =tan!3x

We know that, Formula
X+y
1—xy

1 1

tan"'x +tan 'y = tan~

Thus,

- .
=tan %= =tan " 3x

X
1-x(=5)

zx+zx-x7

=tan~ ! 2F - =tan"!3x

2—x2

_q dx—x —
= tan™' - =tan™'3x

-1
ﬁ=‘=‘3-.'3-.'

2-3x2 = 3x

= 4x - x3 = 6x - 9x3
29x3-x3+4x-6x=0
=>8x3-2x=0

=2x(4x%2-1) =0



1 1
=>xXx=00rx=-0rx=— -
2 2
All satisfies x value
So,
X=00rx= ; orx = — ; is the root of the given equation
Therefore,
0, + L
x=0+-
2

3 D. Question

Solve the following equations for x:

afl—x 1 _
tan™' ——= |- Ztan'x =0, where x > 0
I+x/ 2
Answer

; T . U SUNNES, [ NS
Given:- tan™* () — S tan (x)=0
Take

1—x 1
tan"{(——)——-tan X(x) =0
(1+x) 2 (x)

We know that, Formula

1 XY
1+xy

1 1

tan" " x—tan” "y =1tan"

Thus,

=stan '1—tan ‘x = gtan‘l(x)
== 2tani(x)

4 2
=tan"1(x) = E

s
=X =1tfan-
6

3 E. Question

Solve the following equations for x:

_ _ T
cot™'x —cot 1(:r;—j):_,wherex>0
12

Answer

Given:- cot™!(x) — cot™}(x+ 2) = %

Take

T
cot™1(x)—cot ™ (x+2)= —
(x) ( ) 12

We know that, Formula



1
cot™ x=tant-—
X

Thus,

1 _ 1 1
-—tan"l— =—
X X+2 12

= tan~?!

We know that, Formula

Xy
tan~'x —tan~ 'y = tan™!
1+xy
Thus,
1 1
_ i m
= tan™! (—" =42 ) =—
14=x—r 12
X Xtz
1 1
[—— m
= £ — tan—
1o X—— 1
X Xtz

=

2 ™ s
5 =tan (— - —)
X +2x+1 3 4

We know that, Formula

; tanx — tany
an(x—v) =
(x=y) 1 + (tanx)(tany)
Thus,
2 _ tang—tang

(x+1)2 1+(t:.=.ng](tang]

L2 W3
(x+1)2 1+3

By rationalisation

2 V3—1 1443
x+1)12 143 T 1443

=

2 3-1
= =
(x+1)2  (1+/3)2

= (x+1)%2 = (1+v3)?

= x+1 = *£(1+V3)
=>x+1=1+vV3orx +1 =-1-vV3
=>x=V3orx=-2-v3

as given, x > 0

Therefore

X =vV3

3 F. Question

Solve the following equations for x:
- _ 4 8
tan~' (x +2)+tan~' (x —2) = tan 1[_'—9}.);::-0

Answer



Given:- tan™!(x+ 2) + tan"!(x— 2) = tan'l(%)

Take

8
tan~}(x+ 2) + tan"}(x— 2) = tan‘lﬁ

We know that, Formula

X+
tan"'x +tan 'y =tan! Y
1—xy
Thus,
1—(x+2)x(x—2) 79
-1 : _ -18
= tan oy tan
stan~l—=  — tan 12
1-x2+4 T
2x g

= 40 - 8x2 = 158x

= 8x% +158x-40 =0
=4x%2 +79x-20=0

=4x2 + 80x-x-20=0
=24x(x +20)-1(x+20)=0
=(4x-1)(x+20)=0

=24x-1=00orx+20=0

So,

X = :t is the root of the given equation

Therefore,
1
X=3

3 G. Question

Solve the following equations for x:

X 4X @
tan™' = + tan 1—:—.0-::;(-::\/'5
2 304

Answer
Given:- tan‘l(g) + tan‘l(g) = E

Take



X X W
tan~}(3) +tan"i(3) = —
an (2) an (3) 2

We know that, Formula

X+

tan'x+tan"'y = tan! = Y

X, x
= tan™* (—zxix) =Z

1—-x= 4

z 3

- tan-! (3:\-:+2'\-:) _=

6—x2 4

= 5x = 6 - X2
=>x?+5x-6=0
>x2+6x-x-6=0
=>X(X+6)-1(x+6)=0
=x=-6,1

as given

O0<x< V6

Therefore

x=1

3 H. Question

Solve the following equations for x:

4 x=2 af X+2Y =®
tan + tan =—
Xx—4 X+4 4
Answer
iven:- tan~1(*=2 -1 X2, T
Given:-tan™ () +tan™ () =
Take
: _1x—2+t Xt 2 s
an (—— an (——) = -
(x— 4) [:x+ 4 4
We know that, Formula
X+
tan'x+tan"'y = tan! Y
1—xy

K—2+K+2
- H—a X+a ™
= tan™! (—_;—’ixiz";“z) =

X—4 Xt4

(X—2)(X+a)+(x+2)(x—a)
-1 (x—a)(x+s) T
= tan (I\K—d)l\x-l-d)—LJ{—Z)L}H—Z)) = I

(x—a)(x+4)




(x—2](x+4]+(x+2](x—4]) _ =
(x—4)(x+4)—(x—2)x+2)

= tan~! ( =
4
:\-:2+2:c—8+:\-:2—2:\-:—8) _om

-1 o
= tan ( (x2-16)—(x2 —4)

T o4

_4 {2x%-16 n
= tan~! (—) = —
-12 4
x2-8 s
= = tan-
—6 4
2
- x“ -8 -1
-6

3 I. Question

Solve the following equations for x:

4
tan” (2+x)+tan" (2-x) = tan_lg,
where x < —/30r.x =3
Answer
; . -1 -1 —1(2

Given:-tan (2 +x) + tan (2 — x) = tan (E)
Take

-1 -1 -1 2
tan (2 +x)+tan" (2 — x) = tan =

We know that, Formula
Xty
1—xy

1 1

tan'x +tan~'y = tan”

Thus,

-1 (Z+x)+(2-x) —1(2
= tan 1—(2+x)%(2-x) =tan (3)

_ _q 2
= tan~! =tan~ 1=
1—{4-x2) 3
_, 4 2
= tan~! =tan~!=
1-4+x2 3
4 2
== -
1—4+x2 3

>2x2-8+2=12

=2x%2 =18
=>X==3
Since,

X < -V3orx>v3
So,



x= +3, -3 is the root of the given equation
Therefore,

X=+3, -3

3 J. Question

Solve the following equations for x:

1x-2 4X+2 m
tan~ —— + tan = —
x—1 x+1 4

Answer
Given:- tan‘l(—) + tan ‘1(—) = -

Take

: ‘1(X_2)+t _1[:x+ 2) T
an - (—— an (——) = —
x—1 X+ 1 4
We know that, Formula

X+y
1—xy

1 =il

tan"'x+tan" !y = tan

x-2 %42
= tan™! (l"ii—z"}i—z) =
_—x_

X—1 X+l

(x—z)(x+1)+(x+2)(x—1)
-1 (X—1)(x+1) n
= tan (.\x—1)-\x+1)—|‘x—z)|‘x+z)) - 0

(x—1)(x+1)

4 | A

+('\-:+2]('{— ]) _

~2)( =
(x—1)( = (x—2)x+2) 4

=tan- E_1)—0—a)

2x%— )
2x%—4

m
= = tan-—
4

= tan~?!

1 (¥2+2‘( 24x°—2x— 2) T

-2

2_
=>23-.' 4

=2x2-4=-5
>2x2=1

=X = +-

-
l\.ﬂlH

4. Question
Sum the following series:

1 o) / ~n-1

-1 -1 = -1 -1
fan —+fan —+fan —+...+1an =
9 ] n-1

- e b

Answer

n-—i

Given:- tan‘l(g) + tan™! G) + tan™! (%) + - +tan? (

1422071

)



Take

n—1
tan‘l (m) = Tn (Let)

20 _0-1 )

= = ] e
T, =tan Tighgni

We know that, Formula

1 X7
1+xy

1 1

tan" " x—tfan" "y = tan~

=T, =tan™?2" —tan~* 27!
So,
T, =tan 12! —tan"12°

T, =tan"*4 —tan™'2

T, =tan™12® —tan 2%
Adding all the terms, we get

=tan~'2® —tan'1
T
=tan~12%——
4

Exercise 4.12

1. Question

Evaluate : cos

.43 .45 J
sin” —+sin” —
5 13

Answer
. . _13 . 1 3
Given:- cos (sm 12+ sin 1i)
5 13
Take

L)
COs| sin 5 5in 13

We know that, Formula

sin"!x +sin"'y = sin™?! [xxfl —y2+y1— xz]

(s -G+ 226 )

. 3 12 5 4
cos(sm L :><—+—><:D
5 13 13 5

COs| sin —
65

We know that, Formula




sin"!x = cos™1/1 —x2

Therefore,

1 562
=cos| cos 1—1{—
65
=cos| cos J—_
65

=33

" 65

So,

cos (sin‘l— + sin‘li) _33
5 13/ 65

2 A. Question

Prove the following results:

._1[63] ._1[5J _
sin” | — |=sin” | — |+ cos
65 13

Answer

Given:- 5111‘15—? — sin~!= + cos~
65 13
Take
RHS
5 3
-1 -1
sin“!—+cos™1=
13 5

We know that, Formula

cos tx = sin"t/1 —x2

Thus,

. 45 | g
=gin~!=+sin™! |1 -——=
13 25

1 1

[

=sin~! = + sin"
13

By pathagorous theorem

3 &
=tan™?! —Li—+ tan™* —
l{—== 112
\Il 169 \,Il Z5

15 _
=tan~!= +tan~!
12

Wl

We know that, Formula

X+y
1—xy

1 1

tan"'x +tan !y = tan”

Thus,

L 2

= tan _J.z_a_s 3
1— %=

1z 3



=tan! (ﬁ)
16

Now,

LHS

. 163
=sin~!1—=
&

b=

So,
LHS = RHS

63_ .5, 3
65—5111 13 COs 5

sin™?!

2 B. Question

Prove the following results:

5 J 43 63
— |4+c08 —=tfan —
5 16

sin”!

Answer

5 43
= 4 cos~12
13

=

. . _q 63 -
Given:- sin 1; = sin

=

1

Take

LHS

1 1

E+COS g

sin™
We know that, Formula

cosix = sin"'y/1 —x2

Thus,

. _1 5 . 9
=sin™'=+sin~! [1——
13 25

1 1

=sin~

|

5 .
— +sin
13

By pathagorous theorem

] &

=tan™?! —Li—+ tan™* —

11-== |1__6
\Il 169 y 25

[

=tan~! = + tan~!
12

We know that, Formula

X+y
1—x

1 1

tan'x +tan~'y = tan”



Thus,

L 2
= tan _J.z_a_s 3
1— %=

1z 3
= -1 ﬁ
r(2)
Now,
RHS
=sin~1 22
-5
63
=tan ! 65 -
25
1= (m)
= -1 E
tan (15)
So,
LHS = RHS
63 5 3
- -1 -1
sin!— =sin"! —+ cos~!=
65 13 5

2 C. Question

Prove the following results:

om 9 _1[1] 9 . 22
——51n —
4 3 3

=_sin_

8 4
Answer

: 9r 9 , _41 9 ., _ z
Given:- = — Zgin~1- = Z5in~1 25

] 4 a2 4 2

Take
LHS

om 9 ., _41
=——-gin"t'-

] 4 a2

_9 Ll ._11
=-|z—sin"":
42 3

We know that, Formula

N -1 n
sin"'x+cosly =—
2
Thus,
9 _11
=—(cos 1—)
4 3
Now,

Assume that



1
= COSX=E

And Sinx = Jl—g

24
3

1

L8]

= Sinx =
Therefore,

N 22
X=s5IN1 ———
3

= LHS =RHS

1 2\|"§
3

o9 9 ., _
= _ —Zgin~?!
g8 a4

1 9, _
= =-sin
3 4
Hence Proved

3 A. Question

Prove the following results: Solve the following:

Ixsin'l2x= n/3

sin”
Answer

. . — . - m
Given:-sin~'x +sin~!2x = 3

Take

P =1 T
sinT"x+sin” 2x = 5

L L . _143
= sin~'x + sin~! 2x = sin “’7
R e - B

sin™ 2x = sin™! = —sin7'x

We know that, Formula

sin"'x —sin"ly = sin™?! [xxfl —yZ—yy1— xz]

Thus,

= =2
. . v 3 V3
= 3in~12x = sin 1[?\,*1—){2—){ Jl—? l

. . _1 43 X
= sin~12x = sin 1["?\,’1—}{2—5]

3 :
=>2x=[”7\,’1—x2—§

3
ﬁxzz —_

28

1 3
ﬁxzi_ -

2y 7

3 B. Question



Prove the following results: Solve the following:
cos Ix+sin"x/1-n/6=0

Answer

Given:- cos 'x + sin‘lg —E =0

Take

cos 'x +sin™?!

o] b
|
[N
I
=

1

= cos 1x +sin”

ra |

We know that, Formula

cos tx =sin"1/1 —x2

Thus,

= cos 'x +sin~?!

P |

P
= sin 15—5111 11 —x2

We know that, Formula

sin'x +sin"ty = sin™? [xxfl —y2 4yl — xz]

N E J 1
= sin 1[5 [1—1+x2—+/1—x2 1—;]
. _1X . _qx AE1IE
=sin™ S =sin"" |5 —

x  43V1-=x2

Thus,

= gin~?!

ra |

=" =
2 2 2
IENrE——7
=>\,3\|1 X -0
2
=24J1—-x2=0

Exercise 4.13
1. Question

If cos™! x/2 + cosly/3 = a, then prove that 9x2-12xy cos a + 4y2 = 36 sin? a.

Answer
Given:- cos‘lg + cos‘lg =a
Take
c05‘1§+ cos‘lz =a
2 3

We know that, Formula



cos 'x+cosly = cos” [xy V1 J1 ]

Thus,
-cos ixz - [1- (&) 1= ()] -

-
3 [4—x? [9—y2
S [ o

]= cosa

=xy—V4—x2 x,/9—y2=6cosa

= xy —6cosa=4—x2,/9 —y?

Now lets take square of both side, we get

= (xy—6cosa)’ = (4—xH)(9—-y?)

= x?y? + 36cos?a— 12xycosa = 36 — 9x* — 4y? + x%y*
= 9x% + 4y? — 36 + 36c0s‘a— 12xycosa= 0

= 9x? + 4y — 12xycosa — 36(1 — cos*a) = 0

= 9x% + 4y® — 12xy cosa — 36sin‘a= 0

= 9x? + 4y? — 12xycosa = 36sin’a

Hence Proved

2. Question

Solve the equation: cos™! a/x-cos™1 b/x =cos™ 1/b - cos® 1/a

Answer
. . _13. _1h -1 1 =1l 1
Given:-cos = —cos " —-=C0S8 T -—CD5 T -
X X b a
Take
L3 o 4b 41l
cos cos = COS cos
X X b a
_qa 1 1 _q 1 _1 b
=cos 1>+cos' - =cos ! -+ cos! -
X a b X

We know that, Formula
cos'x+cosly= cos” [xy V1—x2/1— yz]

Thus,

- - ey

Squaring both side or removing square root, we get



(-0 =00
- (b2 - a2)a2b2 = x2(b? - a2)
- x2 = a2p2

=X =ab

3. Question

Solve: cos™! v3x+cos1x= n/2

Answer

Given:- cos 1v/3x + coslx = g

Take

cos 1\/3x + cosix = g

We know that, Formula

cos ix+cosly = cos‘l[xy— v’m\fl——y?]

Thus,

= COS_l[m@xz — \rﬁl — (3;{)2‘!1_}{2] — g

=3x2— /1 -(Bx)21—-x2 = cosg

=43x2 - J1-(3x)2/1—-x2 =0

=4/3x? = /1 — (3x)2y/1 — x2
Squaring both sides, we get

=3x%=1-x2-3x2+ 3x4

=21-4x2=0
4
1
ﬁx:i—
2

4. Question

Prove that: cos™! 4/5+cos™! 12/3=cos! 33/65

Answer

12 _q 33
1?= cos™! =

. 14 _
Given:- cos 1= + cos -
5 65

Take
LHS



12

4
cos t—+cos i —

5 3
We know that, Formula

cos'x+cosly = cos‘l[xy— V1—x2/1— yz]

Thus,
ot 1= (- ()]

e[ (16 [ 144
=% %5 25 169

__q[48 3 _ s
=c0s |- X2

65 5 13
65 65
=cost 2
6
= RHS
So,
4 2 33
-1 -1 -1
C08 "=+ 08" —=cC08" " —
5 3 65

Hence Proved

Exercise 4.14
1 A. Question
Evaluate the following:
' 41 =
taantan 1Z_-
4

] 5

.

Answer

Given:- tan [2 tan1(3) — E}
=)

Now, as we know

2tan1(x) = tan~1(

X .
1_X2),1f|x| <1

and E can be written as tan™(1)
1
= —1.2%g -1
= tan [tan (—%)—tan 1]
175
= tan [tan‘l(liz) —tan™?! 1}
We know that,

1 27y
1+ xy

tan 'x —tan~?!

y=tan~



s,
— -1/12
tan [tan [:1+i)

1z

= -1 __? }
tan [tan (1?)

_ 7

17
1 B. Question

Evaluate the following:

[1 | _13]
tan| —sm " —
2 4

-

Answer
. 1 . _43
Given:- tan [Esm 11}

1

1, 13
Let Zsin™ | = t(say)

Therefore,
N
=gin™!> = 2t
4
. 3
=sin2t = -
4

Now, by Pythagoras theorem

. 3 perpendicular
=8in2t= - = *"———
4 hypotenuse
=c0s2t — V4% —32 _ Base
4 hypotenuse
= _ V7
cos2t= "

As given, and putting assume value, we get

; {1 . _13}
anj;sin™ —
2 4

= tan(t)

We know that: Formula

1 —cos2x

tan(x) = 1+ cos2x

1—cos2i

1+cos2i

= Jw by rationalisation
(4+V7)4—T)



=Je—\."3
a2
Hence
. {1 , _13} 4—+7
anj—sin™" - =
2 4 3

1 C. Question

Evaluate the following:

| 4}
—cos” —
2 5

- -

sin

Answer
Given:- sin G cos‘li)
We know that : Formula

cos lx =2sin! (i J%Y) ; choose that formula which actually simplifies function

Thus, given function changes to

4
1 1-¢
sin| =2sin™*| + —

= sin (5111‘1 (i L))
2x%5

=sin (sin‘l (i %D
v 10

As we know

sin(sin"'x) =xasne€ [-1,1]

=t
v 10
Hence,
1 4 1
sin (— cos” —) =+—
2 5 V10

1 D. Question
Evaluate the following:

-

51'11[ 2tan”! :%J +cos ( tan™ \ﬁ)

Answer
Given:- sin (2 tan‘l(z)) + cos(tan™*/3)
3

We know that :- Formula (- obtain by Pythagoras theorem)



sin™?! ( 2x ) = 2tan~%(x); Formula of tan in terms of sine, so that it make simplification easier

1+x2

And

cos‘l( .11 2) = tan™*(x); Formula of tan in terms of cos, so that it make simplification easier
y 1+x

Now given function becomes,

. ) QXE -1 1
= 51n| sin —2 + cos|cos —
1+= V1+3

o

=gin (sin‘1 (E)) + cos (cos‘l GD

12,1
T13 2
E
T 26
Hence,
2 37
sin| 2tan (= )+ cos(tan *y3) = —
(2ta07%(5) ) + cos(tan~*v3) = =
2 A. Question
Prove the following results:
. 13 1 24
2sin” Z =tan~' 2
5 7
Answer
Given:- 2sin~13 = tan‘l(z—;)
Take
LHS
=2sin~12
We know that, Formula
X
1 -1
sin™!(x) = tan" ! (——=)
V1 —x2
Thus,
2
=2 xtan {(——==)
e
2
=2 X tan" (%)
5
_ -1.3
=2 x tan (1)
Again we know that, Formula
2tan~(x) = tan~*( X ), if x| < 1
1—x2

Thus,



3
2~
=tan‘1(j)
16

3
= tan" (%)
18

o —1p 2
=tan (7)
= RHS

So,

2 si 3 ; _1(24)
sinT'—= tan” "(—

5 7
Hence Proved

2 B. Question

Prove the following results:

1

1 _ 13 1. 44
tan~ — + tan —
4 5

I
=—C05  —=—511
2 5 2

— —

O |2

Answer

iven:- tan—1¢3 T © P Lo 14
Given:- tan ()t tan™"(;) = jcos (5)— ~sin (J)
Take

LHS

—tan—1r1 12

=tan (4)+tan (9)

We know that, Formula

X+
tan'x+tan"'y = tan! v
1—-x
Thus,
1 2
—pan—1[ _3ts
=tan (—“ﬁ)
1-2x=
4 9

ats
— -1
= tan (3%23)

=11

=tan~! (H)
34

=tan! (E)
2

Multiplying and dividing by 2

- )

We know that, Formula

1—x2
2tan lx = cos‘l( )

1+x2



1 2 1 3
15 . Vo WP ¥ g
tan (4)+tan (9) 5 oS (5)

We know that, Formula
=cos 'x = sin"1y1—x2

Thus,

1, _ el
=-sint 1 ——
2 25

1., 4 [16
- 5ln —
2 25

|
[
[N

5
==3sin
2
= RHS
So,

1 2 1 3y 1 4
-1 _— -1 —_— = — -1 —_— = - i _1—
tan (4) + tan (9) 5 oS (5) 5S¢

Hence Proved
2 C. Question
Prove the following results:

112

12 1
tan  —=—tan ~—
3 2 5

a—

Answer

Given:- tan‘l(g) = étan‘%%)
Take

LHS

=tan‘1[§)

Multiplying and dividing by 2
- o (2)

We know that, Formula

2X
2tan 'x = tan™! ( )
1—x2



ran- 2 1t . (12)
an (3)— 5 tan z

Hence Proved
2 D. Question

Prove the following results:

1 1
—J—2tan_1[lJ -
7 3/ 4

Answer

-1
Tan

Given:- tan‘l(é) + 2tan‘l(§) N E

Take
LHS

= tan‘l(é) + Ztan‘l(g)

We know that, Formula

2X
2tan 'x = tan™! ( )
1—x2

Thus,

1

23—

=tan‘1[§) + tan‘l(l—_i)
Ll

4
= tan‘l(é) +tan(%)
Ll

= -1, -1,3
= tan (?)than (4)

We know that, Formula

X+y
1—x

1 1

tan'x +tan~'y = tan”

E
— -1
= tan (%)
ze

=tan"*(1)



So,
tan~t ! + 2tan™? 1)—— z
an (7) an (3 =3

Hence Proved
2 E. Question

Prove the following results:

o4 1
sin~! = + 2tan 1;:

(=

Answer

. i - 4 -1 1 T
Given:- sin™* (=) + 2tan (5) = 3
Take
LHS
=sin (5 + Ztan‘l(g)
We know that, Formula

X

=1 -1

sin™'(x) = tan™' (——)
(\, 1—x2

And,

2X
2tan 'x = tan™! ( )
1—x2

Thus,

e 1
=tan™*(==) + tan™* )
128 K

T
4 2
= tan‘l(—lﬁ,?—) +tan™'(3)
25 ?

= tan‘l(g) + tan‘l(z)

We know that, Formula

X+y
1—xy

1 1

tan"'x +tan !y = tan”

4,2
=tan! (—3—‘*—., 3)
1352
3 4
E
=tan! (ﬂ)
u]

= tan~ ()

s
2



= RHS
So,

-1 + 2tan™? L _ I
sin (5) an (3)— 5
Hence Proved

2 F. Question

Prove the following results:

3 17
——tfan —=
5

2sin!

A

Answer

Given:- 25111‘1(3) — tan‘l(g) = E
Take

LHS

= 25111‘1(3) — tan‘l(g)

We know that, Formula

=1 il
sin™'(x) = tan™ (—
(r = x2)

Thus,

3
-1 5 Yy ¢an~1(Y
=2tan (IE) tan (31)

y o ozs
e
— = _1 .17
=2tan 1[—|5,E—)—tan 1(5)
\ 25

_ 1.3y —1,17
= 2tan (4) tan (31)

We know that, Formula

2x
2tan 'x = tan? ( )
1—x2

Thus,

3
2%~ 17
—tap—1 2y _ -1
tan (1_%) tan (3 1)

3
= tan™ (%) - tan‘l(g)
1le

= -1 E — -1 H
tan (?) tan (31)

We know that, Formula

1 X7
1+xy

1 1

fan" "X —tan "y = tan~

28_17
= tan 1| 2534
1+—x—
i 3l



T44—119
— -1
= tan (ﬁ%ﬁ)

217

=tan~?! (E)
625

=tan" (1)

=

Il
X
I
wn

So,

ZSill_l(E) — tan‘l(E) _I
5 31 4

Hence Proved
2 G. Question

Prove the following results:

1 1 "
2tan_1[—J—tan_l (—J = tan_l[—J
5 8 7

Answer

. . _1,1 1,1 e
Given:- 2tan™ (=) + tan (E)= tan (;)
Take
LHS
= —171 =
= 2tan” (=) + tan [:E)

We know that, Formula

2X
2tan 'x = tan™! ( )
1—x2

Thus,
2x2 1
=tan‘1(1—-}) + tan‘l(a)
25

2
=tan" (&) + tan‘l(g)
25

= -1 _i. -1 E
tan (12)+tan (8)

We know that, Formula

Xty
1—xy

1 1

tan'x +tan~'y = tan”

5,k
=tan~! (—“ 2 )
> 1
1—x-
1z =
1043
— -1
= tan (;Eﬁ_‘g)
=11

_ 13 96
=tan~! (— X —)
24 91




= tan™! (‘—D

= RHS

So,

2 tan‘l(E) + tan‘l(i) = tan‘l(i)
5 8 7

Hence Proved
2 H. Question

Prove the following results:

43 417 =
2tan ' = —tan " — ==
4 31 4
Answer
iven:- 13 _pap it o &
Given:- 2tan (4) tan (31) :
Take
LHS
= -1 E u— -1 H
2tan (4) tan (31
We know that, Formula
2x
2tan'x = tan™! ( )
1—x2
Thus,
2% 17
—tan—172"2Y — tan-1717
tan [1_1) tan (31)
1le
= -1 E E f— -1 H
tan (2 % ?) tan (31)
= -1 E — -1 H
tan (?) tan (31)
We know that, Formula
X—
tan"'x —tan 'y = tan! Y
1+xy

23 17

=tan~ | =24
14+—x—

T 3L

T44—119
— -1
= tan (ﬁ%ﬁ)

217

=tan~! (g)

625
=tan (1)
==
"
= RHS



Ztan‘l(é) — tan‘l(z) _I
4 31 4

Hence Proved
2 I. Question

Prove the following results:

i} 31
+ tan =tan 1_"

_ 1
2tan”! 1:

I..'F||-—L

Answer

Given:- Ztan‘l(z) + tan‘l(z) = tall_lﬁﬂ)
2 7 17

Take

LHS

_ 1,1 -1l

= 2 tan (E) + tan (;)

We know that, Formula

2X
2tan 'x = tan? ( )
1—x2

Thus,
2>‘:i 1
=tan‘1(1—_§) +tan™'(2)
&
2

=tan* (%) + tan‘l(é)
4

= tan‘l(g) + tan‘l(é)

We know that, Formula

X+y
1—xy

1 1

tan"'x +tan !y = tan”

So,
2t _11+t ‘11—1: 3L
an (2) an (7) = tan (17

Hence Proved
2 J. Question

Prove the following results:



1 1 Y 7
4tan_1[ —J _tan”" [ —J :E
5 239 4

Answer

Given:- 4tan‘1(%) — tan‘l(z—;) = E
=]

Take
LHS

= -1y i
= 4tan (5) tan (239)

We know that, Formula

3
4tan~'x = tan~! oA
1-—6x2+x*

Thus,
ad-af2) ;
=tan~! (% — tan~i(—)
1-6(5) +(3) ==
= =1 EEE —_ =il _E_
tan (119) tan [239)
We know that, Formula

1 X7
1+xy

1 1

fan" "X —tan "y = tan~

120 1
= tan 1| 435223
T e

120X239—119)

=tan~?! (
119x%239+120

28561)

=tan! ( -
28561

=tan (1)

So,

atan-1 1 tan-1 1 oom
an (5) an [239 =3
Hence Proved

3. Question

2a 4 1-b°

Answer




Given:- sin~1(—2) — cos ! b tan™%(
1+a% 1+b?
Take
2a 1-b? 2x
=gin~! —cos ! = tan~?!
[:1+az) 1+b2 [:1—3-.'2)

We know that, Formula

2xX
2tan~'x = sin™?! ( )

1+ x2
1—x2
2tan"*x = cos~?
an~ ' x = cos (1+x2)
And

2x
2tan 'x = tan™?! (—)
1—x2

Thus,

=2tan"!(a) — 2tan"*(b) = 2tan™*(x)
=2(tan"*(a) — tan (b)) = 2tan !(x)
=tan~!(a) — tan~}(b) = tan™*(x)

We know that, Formula

1 X7
1+xy

1 1

fan" "X —tan "y = tan~

Thus,
-1 a-b _ -1
=tan [—1+ah) =tan (%)

On comparing we get,

_ a-b
" 1+ab

=X

Hence Proved

4 A. Question

Prove that:
) I—-x~ _ 1—-x7 T
tan cot =—
2x 2x 2
Answer
.- 2
Given:- tan 12X 4 ot 122X - &
2x 2x 2
Take
LHS
_q 1-%2 _q1-x2
=tan~!— + cot™1 ——
2x 2x

We know that, Formula

1
cot™tx = tan? (—)
X

2x

1-x2

)



Thus,
-
=tan~! (1—¥) +tan~! (

2x )
2x 1-x2

We know that, Formula

Xty
1—xy

1 1

tan'x +tan~'y = tan”

t (1—(*;:2J><<ﬁ’;g

1+x*—zx2+an?
— tan‘l ( 2X(1-%2) )

2X(1-K2)—2K(1-KZ)
2X(1-%2)

= tan-1 (l+x"‘+2:\-:2)
1]

= tan~ (o)

. _11—x2+ t_ll—xz
an co
2X 2x

i
2

Hence Proved
4 B. Question

Prove that:

ll—X; _ll—X;

sin J tan~ =
1 2xX 1+x°

.

Answer

. ) _q1-x% _q1-x%2
Given:- sin (tan 12X 4 cos 1= ) =1
2% 1+x2

Take

LHS

, _q1—x* _q 1-x*
= sin (tan 1—+ cos™! 2)
2x 1+x

We know that, Formula

_1 ., 1—x2
2tan " x = cos
1+ x2

Thus,
2

= sin (tan‘ll—x+2tan‘1x)
2x

Again,

2X
2tan 'x = tan™! (—)
1—x2



Thus,

. _ 1-x° _ 2x
= sin (tan I —— 4+ tan? ( D
2% 1-x2

We know that, Formula

X+y
1—xy

1— xz
= sin| tan~!
J.—Kz
l—xz
1+x*—zxT+ax?
— -1 2X(1-X%3)
= 5in (tan (ml v xz)))
2R(1—XZ)
1+x*—zxT+ax?
. - (1—%2
= sin (tan 1 (%’”))

= sin(tan*(e0))

L
= s51n (—)
&

1 1

tan'x +tan~'y = tan”

=1
= RHS
So,
1—x? 1—x2
in—1 -1 -1
sin tan + cos =1
( 2x 1+ XE)
Hence Proved
5. Question
. 1 2a .1 2b _ ab
If sin”" — —sin” _ —tan " x , Prove that x =
l+a- 1+b- 1—ab
Answer
. . . =1 2a A | 2b _ -1
Given:-sin™ (7 _3) + sin™" = = 2tan” " (x)
Take
. —1 i1 -1
sin + sin = 2tan™ (X
(1 + 32) 1+ b2 (%)

We know that, Formula

2x
2tan 'x = sin? ( )
1+ x2

Thus,

=2tan"!(a) + 2tan"*(b) = 2tan™*(x)
=2(tan"*(a) + tan"!(b)) = 2tan"!(x)
=tan~!(a) + tan~!(b) = tan™*(x)

We know that, Formula




X+y

1 1

tan"'x +tan !y = tan” T—xy
Thus,
=>tan‘1(f%;) = tan"1(x)
On comparing we get,
Ly = %D

1-ab
Hence Proved
6. Question
Show that jtan_l ¥+ 51'11_1 2 _ is constant for x =1, find the constant.

1+x°
Answer
Given:- 2tan™%(x) + sin‘l(lizz)
Take
2tan1(x) + 5111‘1(1 = xz)
We know that, Formula
2%
2tan”'x = sin™?! (1 " xz)
Thus,
=2tan"1(x) + 2tan " 1(x)
=4tan™1(x)
Now as given,
For, x =1
= 4tan~1(1)
=4x7
=T
= Constant
So,
2tan™1(x) + sin( x )= T
1+x2

7 A. Question

Find the values of each of the following:

.4 10
2sint =
3

tan‘y{icos

.

Answer



Given:- tan™! (2-:05 (2 sin‘l(i)))

Take

tan™! (Zcos (2 sin‘l(%)))

We know that, Formula

' _1(1)
sin™}(2) = —
2 6

Therefore,

s 1
cos(2 x E) =3

Thus,

=tan~?* (Zcos (2 X E))

=tan~! (Zcos G))

=tan~! (2 X 3
=tan"*(1)

T
4

So,

1 T
tan~'| 2 (2'-1—)=—
an (cos sin (2) 2

7 B. Question

Find the values of each of the following:

COS(SEC_I X —Cosec"lx).|x =1

Answer

Given:- cos(sec™tx — cosec™'x)
Take

cos(sec™tx — cosec™!x)

We know that, Formula

-1 -1 I
sec™'X+ cosec X = 3
Therefore,

T
—cos(E)
=0
So,

=cos(sec™*x — cosec™*x) =0



8 A. Question

Solve the following equations for x:

41
+tan = =

X

1

1 _ _
tan LE-—Qtan 12~ tan

o | =
| A

1
5
Answer
. 1 1 1 1
Given:-tan™*~ + 2tan™'- +tan"*- +tan"t- = =
4 2 6 X 4

Take

1 1 1 1
stan -+ 2tan = +tan -+ tanl1-= =

4 2 & X 4

We know that, Formula

2X
2tan 'x = tan~?! ( )
1—x2

Thus,

1
41 _ 2X— 41 11 ™
=tan™'; +tan ‘() +tan'-+tan - = ¢
1—E X

2
41 R 11 _q1 m
=tan™'; +tan"!(F) +tan~i o+ tan = ¢
25 )

=>tan‘1i + tan‘l(%) + tan‘lé + tan‘l% =

We know that, Formula

X+y
1—x

1 1

tan'x +tan~'y = tan”

1 5
_ -+ 11 _q1
=tan 1(;%*25—)+tan 1g+tan 1;=

4 1z

=
- - 41 g1 n
=tan 1(ﬁ)+tan 1g+tan 1;= "

48
- 32 _q1 11 ™
=tan 1(E)+tan 1g+‘c:=m 1;= "

We know that, Formula

X+
tan'x+tan"'y = tan! = Y
Andtan 11 = E
Thus,
az,1 .
=tan~! (ﬁ%_f;—i)Jr tan‘1; = tan~'1
4z’ s )

235

3= 41 _
=tan 1(%)+tan 1;= tan™'1

258

235

) +tan~'i= tan~'1
226 e

=tan~! (

We know that, Formula



X+y
1—xy

1 1

tan~tx +tan~

y = tan~

Thus,

235 1
- ——+ _ 235
=tan~! (—222%@%) = tan~11, here =2 < 1
1 226X

226 X

On comparing we get,
2351
=2 =1

226 X

235x+226
= =
226x—235

1
=235x+226 = 226x-235

=235x - 226X = 226 + 235

461
=2 = — —
9

8 B. Question

Solve the following equations for x:

-

- = 5]
. 1 28 gl-x 52X T
3sin > —4cos >+ 2tan .
1+x° 1+x° 1-x= 3
Answer
; . .1 23 _q 14t _q 2
Given:- 3sin™! — —4cos 1= 4 2tant— =
1—x2 1-x%2 1—x2 3
Take
.1 2 _q1+® _q 23
=3sin™t— —4cos ! ——+ 2tan"t— = =
1-x2 1—x2 1—x=2 2

We know that, Formula

2tan lx = sin‘l( 2% )
1+ x2

1—x?
2tan'x = cos‘l( )

1+ x2

And

2X
2tan 'x = tan™! ( )
1—x2

Thus,

=3(2tan *(x)) — 4(2tan"*(x)) + 2(2tan"*(x)) = g
=6tan~*(x) — 8tan™*(x) + 4tan™*(x) = 7
=2tan™(x) =

stan™'(x) = -

i
=¥ =tan—
6



=Y =

<
I'.\.ﬂ|'_.

8 C. Question

Solve the following equations for x:

e 2% 4
_ 2x 4l 1—-x 2n
tan 1[ — | +cot : =—.Xx=0
1-x° 2x 3
Answer
w2
Given:- tan™ 2 4 cot™1 125 = 2T x>0
1-x2 2x 32
Take
23 1-x* 2
=tan™! — +cot™l— = =
1-x 2x 3
We know that, Formula
1
cot™'x= tan™?! (—)
X
Thus,
stan 12X 4fan 2L =20
1-x2 1-x2 3
We know that, Formula
2%
2tan~'x = tan™?! ( )
1—x°2
Thus,
=2tan"(x) + 2tan"(x) = 2?“
=4tan"1(x) = 23—“
=stan1(x) = E
=% = tan—
&
1
=Y =—
V3
8 D. Question
Solve the following equations for x:
PO -1/~ n
2tan”"(sinx)=tan" (2secX).X#—
3

Answer

Given:- 2tan 1 (sinx) = tan (2 sec x),x # E
Take

2tan~(sinx) = tan1(2 sec x)

We know that, Formula



2X
2tan 'x = tan™! ( )
1—x2

Thus, here x = sinx

2xsinx

=tan~! ( ) = tan"1(2 secx)

1-sinZx
We know that, Formula

cosx = 1— sin’x

2sinx
— =2secx
cos®x
sinx
cosx
stanx =1
T
=¥ = —
4

Thus the solution isx = nm +E

8 E. Question

Solve the following equations for x:

+—tan~

cos .
x"+1 2

=

L x7-1) 1 1( 2;;} 2
I-x

Answer

2 2 2n

-1 1 — X
+ tan l— = =
+1 2 1-x

Given:- Cos_lx
2

Take

2
_q4x°-1 1 _ 2x
=cops ! + -tan? = —
xZ+1 2 1—x2 3

_ 1-x2 1 _1 2x
=cos {(——=)+-tant— =
x=+1 2 1-x

We know that, Formula

cos (—x)= m—cos™?

1—x?
2tan'x = cos‘l( )

X

1+ x2

And,

2X
2tan 'x = tan™! (—)
1—x2

Thus,

=1 — 2tan™*(x) + ; X 2tan~*(x) = 23—“

=1 —tan"!(x) = %ﬂ

=tan}(x) =m— %ﬂ

b1
=X = tang



=¥ = \,-"5
8 F. Question

Solve the following equations for x:

A
—1 — & -1 T & _T
fan +tan = —
x —1 x+1 4
Answer
. _1x-2 _1 x+2
Given:-tan 1= 4 tan 1 === 2
x—1 x+1 4
Take
_yx-2 oy x42
stan™ 1= 4 tan - =T
x—1 x+1 4

We know that, Formula
T
tan™t1=-—
4
Thus,

_q x—2 _q x+2 _
stan *— +tan *— = tan ' 1
x—1 x+1

_q x-2 _ _q x+2
stant— = tan 1 — tan 1 —
x—1 x+1
We know that, Formula
_ _ -y
tan"'x —tan 'y = tan!
1+x
X+2
_q x-2 _
=tan~'=— = tan 1( _xts )
x—1
E+1-X—-2
_q x-2 _
=tan *=— =tan? (x e S z)
x—1
_q x-2 _ -1
=tan~!'=— = tan 1( )
x—1 2x+3

On comparing we get,

x—2 -1

x—1  2x+3

=>(2:\-:+3](:\-:—2] _ _
(x-1)

=(2x+3)(x-2)= -(x-1)
22x2-4X +3x-6=-x+1
=22x%2-x-6=-x+1

=2x2=7
ﬁx — i -
2

9. Question



4] fa—b 0 [ acoso+b
Prove that 2 tan tan— |=cos | ——

a+b 2 a+bcosH
Answer
. ~ . a;b E _ _1 {acos8+b
Given:- 2 tan (\} a+b tan (2)) = cos (a+bcosE)
Take
LHS

=2tan™?! (E tan @))

We know that, Formula

1 1 1-x7
2tan "X = cos~
1+x2

Thus,

2
\Iﬁtan

= C0S8~ 2
\|a+btan

(a+b (a—b) xtanz(g))

a+b+(a—b)xtan? E)

. a(1—tanz(§)j+b(1+t3“2(g)j
a(1+tanZ (g)j+b(1‘t3“2(§)j

=C0S5

Dividing numerator and denominator by (1 + tan® (g)) we get
—tan?(2
a(l an I:3))+b
1+tan2I:—)
-1 2
=C08 —— g
l—mnztz}
a+h a
1+tan2(£}
We know that, Formula

1 — tan? (%)

COSX = — 7~
2=
1+ tan (2)
Thus,
= cos-1 (acosa+b)
a+bcos8@

= RHS



4| (a—Db 6 _, (acosb+b
2tan tan (—) = C08§ (7)
a+ bcos6

Hence Proved

10. Question

prove that:
4 2ab 1 2xy o 2ap

tan ———+tan ——— =tan ———, where a= ax - by and B=ay+bx.

a’—b? x’ -y’ a b’
Answer

ven- -1 _2ab 1 2xy _1 Zap

Given:- tan = e T fan ey tan e
Take
LHS
_ —1 2ab -1 Qx}r
= tan az_bz—i—tan eyt

We know that, Formula

X5 ¥
tan"'x +tan !y = tan!
1—xy
Thus,
zab 2KV
—tan-1 {az_hz}"(xz_yz]
an zab 2KV
1_(324}2) 2—3.*2]
zabxZ-zaby+zxyal-z2xyb®
= tan~—?! (a?-b?)x3—y2)
aZx24+bZyi-zabuy—ayZ-b2xZ-zabxy
(a2-b2)(x2-y2)
= tan-! 2(abx®—aby®+xya®-—xyb®)

aZ?xZ+b%y?—2abxy—a*y®—bZx*—2abxy

Formula used:- a2 + b2 + 2ab = (a+b)?

_ pan1_ 2(0xiay)axby)
(ax—by)?—(aZy*+b2xZ+2abxy)
—tan-1 2{ax(bx+ay)+by(ay+bx)}

(ax—by )2 —(bx+ay)?
As given
a= ax-by and B= ay+bx
Thus,

2af

tan~t

= RHS
So,

2ab 2xy 2af

-1 -1 _ -1
tan 712 + tan x2_y? tan @ — 2



Hence Proved
11. Question

For any a,b,x,y>0, prove that:

2 [ 3ab*-a’ 12 L 3xy? —x* 1 2ap
—tan~ | —— | =t | =tan ———
a

3 5 an 3 5 ——, where a=-ax by, B = bx + ay.

3 b —3ab )3 yo —3X7y g
Answer

. 2 _q 3ab®-a? 2 _q 3xy®-x? _ af
Given:- = 1 z 1 _ 1

31::;111 b3—332b+ 31::;111 72 3y tan T

Take
LHS
_ 2 _q 3ab®-a% 2 _q 3xy?—?

31::;111 b3—332b+ 31::;111 2 axy

Dividing numerator and denominator of 15t term and 2"9 term by b3 and y3 respectively.

3ab%—33 axyZ-x2
=St g+ St
e 3
a ayd S 3
= Etan‘l w+ gtan—lm

1-3(5) 1)

We know that, Formula

.3
3tan 'x= tan? BX—X
1— 3x2

Thus,
= 2[3 tan™! (E)}Jr 2 {3tan~* G)}
=2tan™! (E) +2tan™! G)

=2 (tan"* (2) + tan™! GD

We know that, Formula

-1 1. _ a1 X ty
tan™*x+tan "y = tan —xy
Thus,

6
= 2tan~?! 4

=(5)5)

(ayﬂ:u{)
=2tan? —b—;fa,{

55)
=2 tan~1 7

by—ax
As given,

ay + bx =B, -ax + by = a



=2 tan 18
o

We know that, Formula

2X
2tan 'x = tan™! ( )
1—x2

Thus,

2xB
=tan—?! (—ﬁ“—z)
1-(3)

2
=tan? (ﬂa} X — )
(18

<= _g2
=tan~! 2:_(':;2

= RHS

So,

Etan‘1 3ab 6 + Etan‘1 Xy —x° an~!
3 b* —3a%b 3 Z— 3%y

Hence Proved

MCQ
1. Question

Choose the correct answer

" tan'l-[\h +x? —\/1—);2
l\h—xz —\/1—>-;3

A. sin 2a

— ¢, then x2 =

B. sin a

C. cos 2a

D. cos a

Answer

We are given that,

. _l[xfler?— I1—:==;2]
an =
V1+x2+41—x2

We need to find the value of x2.
Take,

. _1[\fl+x2— ﬁl—xz]
an =a
V1+xZ+41-—x2

Multiply on both sides by tangent.

; [t _1[\.'fl+X2—\fl—X2]
= an|tan
V1+x2+41—x2

=tanaua

Since, we know that tan(tan'! x) = x.



So,

Vi+x2—41—x2

V1+xZ2+41 —x2

=tana

Or

V1+x2—41-—x2

Vi+x2+41—x2

tana =

Now, we need to simplify it in order to find x2. So, rationalize the denominator by multiplying and dividing by
f Z_ .1 —_x2
V1+x 1—x2

Vi+xZ2—41 —Xz) (v"l +x2 41 —Xz)

=fana =
(m"'1+X2+\,"'l—X2 V1+x2—41-—x2

(Vi+xz- ﬁl—x2)2
[m"'1+X2+ v'll—Xz)[\fl+X2— \.'fl—XE)

Note the denominator is in the form: (x + y)(x - y), where

(X + y)x-y) =x?-y?

So,
= '—2)2
[1+x=—v1-x .
= tang = —— = - .. 4l
{\," 1+:(2:| —(v1—=E)
Numerator:

Applying the algebraic identity in the numerator, (x - y)? = x2 + y2 - 2xy.

We can write as,

(Vi+x2- Jl—xz)z - (¢1+x2)2+ (\fl—xz)z —2J1+x%f1-x2

2
> (VI+2-y1-%2) = (1+x)+ (1 -x3) - 2/T+ DA —x2)

Again using the identity, (x + y)(x - y) = X% - y2.

2
> (VI —{1-%2) = 1+x2+1-x2—2/1- (22

2 ..
= (WVI+x2—V1—x2) =2-2y1—x%...(i0)
Denominator:

Solving the denominator, we get

(Viter) —(VI-%) =(1+x)-(1-%?)

= (vm)z - (\,m)z =1+x*—1+x?

= (VIFx2) - (VI—x2) = 2x2 (il

Substituting values of Numerator and Denominator from (ii) and (iii) in equation (i),

2= 241 —x*

= tana =
2x2



2(1-V1—x%)

=fana =
2x2
1—+1—x*
==tfanada=—————
Xz

By cross-multiplication,

s>x2tana=1-v(1-x%

>V(l-xY)=1-x2tana

Squaring on both sides,

= [V(1 - xH1? =[1- X tan al?

=>1-x4=(1)2 + (x2tan a)? - 2x2tan o [, (x - y)2 = x2 + y2 - 2xy]
=1-x*=1+x"tan? a - 2x2 tan «
=>x*tan?a-2x%tana+x*+1-1=0

=x*tan? a-2x%tan o + x* = 0

Rearranging,

=>x*+x*tanZa-2x2tana =0

=x*(1 +tan? a) - 2x2 tan a = 0

= x% (sec2a)-2x2tana = 0 [, sec2 x -tan? x = 1= 1 + tan? x = sec? x]
Taking x2 common from both terms,

= xZ(x2sec2a-2tana) =0

=>x2=0o0r(x!sec?a-2tana) =0

But x2 # 0 as according to the question, we need to find some value of x2.
=x2sec?a-2tana =0

= x?sec?a = 2tan a

In order to find the value of x2, shift sec? a to Right Hand Side (RHS).

5 2tana
=X =

sec2qg

sin o

1
—andtana = ,
cos~ o COsO

sina
2(S55a)
2 cosa

Putting secZag =

= X =
1
cosZa
5 sina 5
=X"=2X ¥ Ccos“ o
cosa

= x2 = 2 sin a cos a

Using the trigonometric identity, 2 sin x cos x = sin 2x.
= x2 = sin 2a

2. Question

Choose the correct answer



' 1 .4 4
The value of tan { cgs_l — 511 I } is

A N29
3
B, 29

29
Answer

We need to find the value of

1 4
tan {cos‘l— —sin™?! —}

5\;@ v"ﬁ
Let,
5, 1 ., 4
cosS " ——==aand sin--—=">h
52 V17
1 4
= cosa = ——= andsinb = —
5V2 V17

Let us find sin a and cos b.
For sin a,

We know the trigonometric identity, sin a + cos?a = 1

2 2

=sin“a=1-cos®a
=sina = V(1 - cos? a)
Substituting the value of cos a,

2

7

|~

andcosa =

We have sina = — -
V2 54/

)

b

(9}



So, we can find tan a.

sina
v, tana =
osa
7
52
1
5\-@
7
— B
= ¥ 5y2
5\-@

=stana=7...(i)

For cos b,

We know the trigonometric identity,
sinZb + cos2b =1
=cos2b=1-sinb

= cos b = V(1 - sin? b)

Substituting the value of sin b,

)

4 2
= cosb = l—(—
V17

11

. 4
We have sinb = = and cosb =
N

V17
So, we can find tan b.
sinb
. tanb =
cosb
4
V17
-1
V17
4
— 17
= X 17
V17
= tan b =4 ...(ii)
We can write as,
1 4
tan {cos‘l— - sin‘l—} =tan{a—b
5 77~ bl

Now, we need to solve Right Hand Side (RHS).

We know the trigonometric identity,



tana —tanb

tanla—b)=——
( ) 1+ tanatanb

Substituting the values of tan a and tan b from (i) and (ii),

7—4
1+ (7@
3
T 1+28
3
29
So,
. { L1 ., 4} 3
dll4C0Ss — — 5111 —_— =
5\;@ \,"'ﬁ 29

3. Question
Choose the correct answer
2tan”! | cos ec(tan_l X) —tan(cot_l x)| is equal to
A. cot™1x
B. cot‘ll
X
C. tan"1x
D. none of these
Answer
We need to find the value of 2 tan'! |[cosec(tan™ x) - tan(cot™! x)|.
So, take
2 tan'! |cosec(tan™ x) - tan(cot™! x)|
Using property of inverse trigonometry,

cot™ x=tant-—
X

= 2tan"!|cosec (tan'x) — tan(cot 1 x)|

1
= 2tan~!|cosec (tan™'x) — tan (tan‘lg)|

=2tan~?

1
cosec (tan™*x) — ;|

Now, let y = tan'l x
So, tany = x
Substituting the value of tan'! x and x in the equation,

1

cosecy — m

= 2tan"!|cosec (tan"'x) — tan(cot™'x)| = 2tan™?

Put,
siny
cosy

1
cosecy = siny andtany =



1 1
= 2tan"!|cosec (tan~'x) — tan(cot™'x)| = 2tan~ ! |—— — —
| ( ) ( ) siny  siny
cosy
1 cos
=2tan ! |———— y
siny siny
1— cos
=2tan~? —y
siny

Since, we know the trigonometric identity,

1-cos?2y=2sin?y
= 1—cosy = 251112%
Also, sin 2y = 2 siny cos 'y
= siny = Zsingcc-sz

y 2°%%2

We get,

WS

. 2 sin?
=2tan" " |————=
e e

2511120:)52

Then,

_ ¥
= 2tan~?! |tan—|
2

=2x

0 | 5

= 2 tan'l |cosec(tan'! x) - tan(cotl x)| = y

Put y = tan'! x as let above.

= 2 tan'l |cosec(tan! x) - tan(cot™! x)| = tan'! x
4. Question

Choose the correct answer

If cos™ 2 + cos™ 2 = ., then X— _z cos o+ ‘ _
a b 2 ab o2

A.sin? a

B. cos? a

C.tan? a

D. cot? a




Answer

We are given that,

S

cos1= + cos™
a

We need to find the value of

X2 2

2~ op s« + bz

By property of inverse trigonometry,

costa + cost b =cosl(ab - V(1 -a?)V(l-b?))

So,

¥ _

_lx
cos~ 11—+ cos
a b

o

4
]
o
w
|
-
—,
| 4
Mo’
~—
o=
e’
|
-
'_l
|
—
|
—
[2%]
et |
'_‘A
|
—
o | =3
—
Il
=2

Taking cosine on both sides,

-1 _
= C0S|CoS E_ 1_3_2 ’l—b—z = Cosa

Using the property of inverse trigonometric function,

cos(cos™! x) = x

To simplify it further, take square on both sides.
Xy z x?
=>[£—COSG(:| —I 1—;

Using algebraic identity,

(x-y)?=x%+y% - 2xy

Xy 2 2xy x? y2
= (5) +c0520:—5c050:= (1—&1—2 1-12

Simplifying it further,



2.2 2 2 2..2
Xy 2xy X° y© X%y
= +cos’la——cosa=1————+
aZbz ab aZ b2 azb?
Shifting all terms at one side,
2.2 2,.2 2 2
X X X 2x
y y +—+y———ycosa=l—c052tx

azbz azb? aZ b? ab
Using trigonometric identity,
sin?x + cos?x =1

=sin2x =1 - cos? x

We get,
2 2
X°  2xy
— — —~cosa+—=sin’a
az ab L

5. Question

Choose the correct answer

1 a4y .1 3
The positive integral solution of the equation fdll "X +C0S ———— =511 —— s
AJ1+y° v10

Ax=1y=2
B.x=2,y=1
C.x=3,y=2

D.x=-2,y=-1
Answer

We need to find the positive integral solution of the equation:

tan"'x + cos™? = sin~!

-
ﬂm
=)

1 +y2

Using property of inverse trigonometry,

. 4V 1—x2
cos™lx =tan
Also,
X
-} -1
sinT'x =tan™!——
V1 —x2
Taking,
3
tan 'x +cos™? =sin"!—
\r’ y? \,"ﬁ
2
1+y2 Tio
y
=tan 'x+tan! 7 = tan~?! v10
J1+y?




1+ }’2 E
= tan"'x +tan?! v = tan~! — 5
J1I+y2 i)
1+y2—y? 3
1+y? —
—
stanlx+tanlY—— = tan 1 2 10
_y 10-9
J1+y? 10
1 3
T+y2 )
= tan"lx + ‘cam‘lfy = tan‘“’—lf
\,l+y2 10
1 T+y2 3
=tan 'x+tan! ot = tan ! (—
(\,’1 +y? ¥ ) V10
-1 e =il
= tan~ " X +tan § =tan " 3

Using the property of inverse trigonometry,

A+B)

tan!A+tan !B = tan~?! (
1—AB

Similarly,

1
X+ =
=tan!| ——— |=tan!3

1
1- (%) (3—{)
Taking tangent on both sides of the equation,

X+ 2

= tan|tan™? ?{ = tan[tan™* 3]
¥

Using property of inverse trigonometry,
tan(tan'l A) = A

Applying this property on both sides of the equation,

x+%
=:-1 =3
y

Simplifying the equation,

xy+1

=




Cross-multiplying in the equation,
=>xy + 1 =3(y-x)
=Xy + 1 = 3y - 3x
=2Xxy+3x=3y-1
=2>x(y+3)=3y-1

~3y—1
B v+3

= X

We need to find positive integral solutions using the above result.

That is, we need to find solution which is positive as well as in integer form. A positive integer are all natural
numbers.

Thatis, x, y > 0.

So, keep the values of y =1, 2, 3, 4, ... and find x.

X 3(1)—1_1 3(2)—1_ 3(3)—1_4 3(4)—1_11 3(5)—1_7

1+3 2 24+3 3+3 3 4+3 7 5+3 4

Note that, only at y = 2, value is x is positive integer.
Thus, the positive integral solution of the given equationisx =1,y = 2.
6. Question

Choose the correct answer

1

. _ T
If sin~'x — cos x:g,thenx=

o
IJ||-4j |..'|||—l
¥

(@)
I
| =

D. none of these
Answer

We are given that,

sin"'x —cos7lx = E (i)
We need to find the value of x.

By using the property of inverse trigonometry,



-1 -1 n
sin” " X + cos X=§

We can find the value of sin'l x in the terms of cos! x.

T

= sin'x=——cos

X

Substituting the value of sin'! x in equation (i),
T s
- -1, _ -1, _ _

(2 COS x) C0s "X = c

Simplifying it further,

s . . s
——C05 "X— (08 "X=—
2 6

n -1
:E—Zcos X =

= 2cos 1x=

old oA

2]
|

= (05 X=—
6

Multiplying cosine on both sides of the equation,

™
1x] = cos—

= cos[cos”
[ 6

Using property of inverse trigonometry,

cos[cos™! x] = x

s
= X = C05—
6

And we know the value,

T \,"'5
C0S— = —
6 2

Therefore,

V3

XT3

7. Question

Choose the correct answer
: 1 1 7.
sm[cot {tan(cos x)} | is equal to

A. X



D. none of these
Answer

We need to find the value of
sin [cot! {tan (cos! x)}1 ...(I)

We can solve such equation by letting the inner most trigonometric function (here, cos™! x) as some variable,
and solve systematically following BODMAS rule and other trigonometric identities.

Letcoslx =y
We can re-write the equation (i),
sin [cot {tan (cos™ x)}] = sin [cot {tan y}]

Using trigonometric identity,
T
tany = cot (E - y)
[, cot G—y) lies in 15t Quadrant and sine, cosine, tangent and cot are positive in 15t Quadrant]

= sin[cot Htan(cos 1 x)}] = sin[-:-::ot‘1 [cot (g— y)}]

Using property of inverse trigonometry,

cot'I(cot x) = x
T
= sin[cot™*{tan(cos™*x)}] = sin [E - y]
Using trigonometric identity,
T
oSy = sin (5_ y)
. . . . s
Substituting this value of sin (E_ y),

= sin[cot™}{tan(cos™* x)}] = cosy
We had let above that cos! x = y.
If,

coslx=y

= X = COS Yy

Therefore,

sin[cot™{tan(cos™'x)}] = x

8. Question

Choose the correct answer

The number of solutions of the equation tan ™! 2x + tan ™ 3x = — is

A2
B.3
C.1

D. none of these



Answer

We need to find the number of solutions of the equation,
1 1 n
tan " 2x +tan " 3x = Z

We shall apply the property of inverse trigonometry, that is,

tan!A+tan !B = tan™?! ( AtD )
B 1—AB
So,
2x 4+ 3x T
tan~t (—) =—
1—(2x)(3x)) 4
; _1( bx ) s
= —
W1 Tex2) T 1

Taking tangent on both sides of the equation,

bx T
_1 _ _
= tan [tan (1 i exz)] = tan4

Using property of inverse trigonometry,

tan(tan'l A) = A

Also,

t T 1
an— =
4

We get,

bx .
= =
1— 6x2

Simplifying it,

=5x = 1 - 6x°

= 6x2 + 5x -1 =0

Since, this is a quadratic equation, it is clear that it will have 2 solutions.
Let us check:

We have,

6x2+5x-1=0
=26x2+6x-x-1=0
=2>6Xx(X+1)-(x+1)=0
=(6x-1)(x+1)=0
=(6x-1)=0o0r(x+1)=0
=26x=1lorx=-1

—1 =-1
= = — 3 = —
X 6OIX

Hence, there are 2 solutions of the given equation.
9. Question

Choose the correct answer



- 5w _ 27
If o =tan 1[ tanT] and p = tan 1[ —tanT], then

A.da=3

B. 30 = 4B
7T

C. Cj‘_—ﬁ:_
12

D. none of these
Answer

We are given that,
. 5m . Zm
a=tan " (tan— ) andf=tan"" | —tan—
4 3
Take,

5
a=tan? (tan —)
4

We can write 1—“ as,

L8 . T
— =TI J—
4 4
Then,

o =tan™! (tan (TL'-I— 9)

Also, by trigonometric identity

t ( +ﬂ) t T

an{m+—)=tan—
4 4

[, tan (‘]‘L’—'—E) lies in Ill Quadrant and tangent is positive in Ill Quadrant]

™
= a=tan"? (tang)

Using the property of inverse trigonometry, that is, tan'l(tan A) = A.

0
=0a=—
4
Now, take
21
B =tan"?! (— tan?)

. 2
We can write ?ﬂ as,

21 T
3 "73

Then,
B =tan"?! (— tan (TI.’ - g))

By trigonometric identity,



tan (']T - g) = - tang

[, tan (T[—g) lies in Il Quadrant and tangent is negative in Il Quadrant]

= B =tan™! (— (— tang))

= B =tan™! (tang)

Using the property of inverse trigonometry, that is, tan'l(tan A) = A.

bl
=:-B—3
We have,
T q T
a=—andpB=—-
4 P 3

s4a=mnand 3 =mn

Since, the values of 4a and 3 are same, that is,

da=3B=m
Therefore,
da = 3B

10. Question

Choose the correct answer

The number of real solutions of the equation m = .Jfgin‘l(sjn X),-T=<x<Tmis
A. 0

B.1

C.2

D. infinite

Answer

We are given with equation:

V(1 + cos 2x) = V2 sin"l(sin x) ...(J)

Where -n=x=mn

We need to find the number of real solutions of the given equation.

Using trigonometric identity,

2

€os 2x = cos? x - sin? x

2 2

= €0Ss 2X = cos2 X - (1 - cos? x) [, sin?2 x + cos?2 x = 1 = sin? x = 1 - cos? x]

2

= C0Ss 2X = cos2 x - 1 + cos? x

2 cos?x-1

= CO0S 2X

=1 + cos 2x = 2 cos? x

Substituting the value of (1 + cos 2x) in equation (i),

V(2 cos? x) = V2 sin"L(sin x)



= V2 |cos x| = v2 sin'I(sin x)
V2 will get cancelled from each sides,

= |cos x| = sin"I(sin x)

»

Take interval x (—g g)

|cos x| is positive in interval (—gg) hence |cos x| = cos x.
And, sin x is also positive in interval (—gg) hence sin"1(sin x) = x.

So, |cos x| = sin"l(sin x)
= COS X = X

If we draw y = cos x and y = x on the same graph, we will notice that they intersect at one point, thus giving
us 1 solution.

=, There is 1 solution of the given equation in interval (—gg)

Take interval x € [—ﬂ,— g)

|cos x| is negative in interval [—m—g), hence |cos x| = -cos x.

And, sin x is also negative in interval [—Tr, —g) hence sin"l(sin (m + x)) = m + x.

So, |cos x| = sin"(sin x)
=-C0S X = T + X
= C0S X = -Tl - X

If we draw y = cos x and y = -t - X on the same graph, we will notice that they intersect at one point, thus
giving us 1 solution.

.., There is 1 solution of the given equation in interval [—Tr, —g)

Take interval x € Gﬂ]

|cos x| is negative in interval Gﬂ , hence |cos x| = -cos x.

And, sin x is positive in interval Gn] hence sin(sin (-1 - x)) = - - x.

So, |cos x| = sin"l(sin x)

= -CO0S X -M-X

= -C0S X = (T + X)
= COS X =T + X

If we draw y = cos x and y = it + x on the same graph, we will notice that they doesn’t intersect at any point,
thus giving us no solution.

.., There is 0 solution of the given equation in interval Gn]

Hence, we get 2 solutions of the given equation in interval [-m, 1].
11. Question

Choose the correct answer



If x < 0,y < 0 such that xy = 1, then tanlx + tanly equals

AT
2
B. _ T
2
C.-n

D. none of these

Answer

We are given that,

xy=1,x<0andy<0

We need to find the value of tan'! x + tanl y.
Using the property of inverse trigonometry,

X+
tan'x +tan~ 'y = tan™! ( i )
1—xy

We already know the value of xy, that is, xy = 1.
Also, we know that x, y < 0.

Substituting xy = 1 in denominator,

X+
tan'x +tan~ 'y =tan™! (_y)
1-1
X+y
an 5

And since (x + y) = negative value = integer = -a (say).
a

— -1(_ _

= tan ( 0)

=>tanl x + tanly = tan'! - ...(i)
Using value of inverse trigonometry,

I _o=——

tan”
2

Substituting the value of tan! -» in the equation (i), we get

T

tan"'x+tan"ly = — 3

12. Question

Choose the correct answer

~ . B ; T u
If u = cot l{mftane}—tan I{Jtane} then, tan[z—:] =

A Jtan®
B. Jcoto
C.tan 6

D. cot©



Answer

We are given with
u = cotl{vtan 6} - tan'1{vtan 6}

We need to find the value of tan G— g)

Let vtan 6 = x
Then, u = cot1{vtan 6} - tan'1{vtan 6} can be written as
u=cotlx-tanlx..(i)

We know by the property of inverse trigonometry,

™
cot™'x+tantx = 3

Or,

1

cot™x=-—tan" ' x

Substituting the value of cot™! x in equation (i), we get

u = (cotl x) - tan'® x
™
=u= (E—tan‘lx) —tan tx

T

=——tan!
2

1

X—tan ~x

L 2tan?
=——2tan""x

2
Rearranging the equation,

T
= u+2tan‘1x=§

= 2tan"lx = T u
S 2
Now, divide by 2 on both sides of the equation.

™
2tan™'x 3 U

"7 2 T 2
>

= tan IXZ%_E

m 1 u

=3%373

T u

T4 2

Taking tangent on both sides, we get

m u
= tan(tan™*x) = tan (E_ E)

Using property of inverse trigonometry,

tan(tan'! x) = x



= X= taIl(g—%)

Recall the value of x. That is, x = vtan 6

= tan (g— g) = /tan®

13. Question

Choose the correct answer

g X a4y 6 ) 5] )
If cos™' 2+ cos li::,then 4X'—12X}’COS:—9}"

- - - -

A. 36

B.36 -36 cos ©
C.18-18cos 6
D.18 + 18 cos 6
Answer

We are given with,
cos~t 2+ cos~2E = 2 ..(i)
3 2 -

We need to find the value of

2 B 2
4x-— 12 xycosEJr 9y
Take Left Hand Side (LHS) of equation (i),
Using the property of inverse trigonometry,
cos*A+ cos™!B= cos‘l(AB —J1—-A%J1- Bz)
Putting A = g and B = g

X ¥
LHS = cos™ =+ cos™1%
3 2

- Q) - 16 [1-6)

b4 XE 2
= LHS = cos™? X_ 1—— 1—y—

= LHS = cos™? X_ 9% Ay

Equate LHS to RHS.

cos~ ! X_ IoxF 4y =9
6 9 4 2

Taking cosine on both sides,




w2 — 12
= cos|cos™? L kS it = l:l:rsE
6 9 4 2

Using property of inverse trigonometry,

cos(cos'l A) = A

Xy (9—-x2 |[4-—y? 8
=>__
6 9 4

Simplifying the equation,

Xy V9-—x2/4—y? 0
= —— = C0S=
6 3 2 2
Xy VI9-—x%j4—-y? 0
= —— = COS>
6 6
— B
=Xy — 9 —x%,/4—y? =6cos£

g —
=>xy—6cos£=v9—x2\,4—y2

Squaring on both sides,
81° —— ——
ﬁ[xy—écosi] =[\f9—x2\,4—y2]

Using algebraic identity,

(A-B)2 =A%+ B2-2AB

2

0 0
= (xy)* + (6 cosi) —2(xy) (6 COSE) =(9-x)(4-y?)
0 8
. Xzyz +36 COSZE _ 12}{?,:055: 36 — 93,2 — 4x%? +X23«'2
3 B
= x%y? —x?y? +4x? +9y% — 12xy cos =36 — 36 cosgi

2__ 9 2 _ _ 29
= 4x 12xyc052+9y = 36 —36¢co0s8 5

Using trigonometric identity,

cos 28 = cos? 6 - sin? 6 ...(ii)

sin2 @ + cos?2 0 = 1=sin20 = 1 - cos? 0 ...(iii)

Putting value of sin? 8 from equation (iii) in equation (ii), we get
cos 26 = cos? 6 - (1 - cos? 8)

Or, cos 26 = cos?2 0 - 1 + cos? 8

Or, cos 20 = 2 cos? 0 -1

Or, 2 cos?0 =cos 20 + 1

Replace 6 by 6/2.

0 2x0

2c0525=c05 +1




3]
= 2c052§= cosf +1

Substituting the value of 2 coszg in
2 B 2 28
4x° — lzxycosiJr 9y~ = 36— 36 Cos 5
2 B 2 28

= 4x° — lzxycosiJr 9y =36 — 18 (2 CoS E)
0

= 4x? — 12xy cos + 9y? =36 — 18(cosB + 1)
0

= 4x% — 12xycosi+ 9y? =36 — 18cosf— 18

0
= 4x% — 12xy cos5 + 9y? = 18 — 18 cos 0

14. Question

Choose the correct answer

3x 2x-y
If o= tan ™" J3x , B =tan™" 277 | thena-B =
2y — X J3v

A.

w
wla oA

o | A

)
|
WA

Answer

We are given with,

ﬁh
a=tan?
2y — X

2x—y
=tan! ( )
B 3y

We need to find the value of a - .

So,

[3x 2% —
T R s ) y
a— 3 =tan (Zy—x) tan ( 3y )

Using the property of inverse trigonometry,

A—B
tan™'A—tan !B = tan~! ( )
1+ AB

So,



a—pB=tan! o V3y
a V3x \[2x—y
1+
Zy —X \,@y

V3xx\3y— (2x—y)(2y—x)
: V3y(2y — x)
V3y(2y — x) +V3x(2x—y)
V3y(2y —x)

=a—f=tan"

» (ﬁx x 3y — (2x—y)(2y —x)
= a—f =tan =
V3y(2y —x)
V3y(2y — x) )
V3y(2y — x) +3x(2x—¥)

3xy — 4xy + 2x% + 2y% — xy )

=a—fB=tant
B (2\,@3’2 —3xy + 24/3x2 — \/3xy

2x% + 2y — 2xy )
2\/3x2 + 24/3y2 — 24/3xy

=:-o:—[3=ta11‘1(

Simplifying it further,

2x% + 2y — 2xy )

=a—f=tan?
B (\,@(sz + 2y2 — 2xy)

The term (2x2 + 2y?2 - 2xy) gets cancelled from numerator and denominator.

(L
= a—f =tan (E)

Using the value of inverse trigonometry,

i
na-B=g

15. Question
Choose the correct answer

cus_l;'

Let f(x)=e \sn(x=73)}  Then f(8 n/9) =

/18
A- e."

137/18
B- e.

-2x/18
C o

D. none of these
Answer

We are given with,
f(x) = ecos_l{sin(x+%)}

We need to find f(%ﬂ).



We just need to find put x = 89—“ in f(x).
So,

f(ag_ﬂ) _ ecos_l{sin{sf;—ﬂ+%:|}

Simplify the equation,

f(o) = o bn(*55>)

= f(i)_ﬁ) _ ecos—l[sin(%)}
Using trigonometric identity,
cos (g - B) =sinB

{(E) = ook

S f@_“) e e )

8 = 13

. f(_“) = geos ™ {eos(—7 )}
9

Using trigonometric identity,

cos (-0) = cos 6

- f(g_’“) _ ecos—l[cos{%)}

9

Using property of inverse trigonometry,

cosl(cos ) =0
13
9
16. Question

Choose the correct answer

41 42
tan~ — + tan~ — is equal to
11 11
A.0
g. L
2
C.-1

D. none of these
Answer

We need to find the value of

1 2
tan ' —+tan ' —
an 11 dan 11

Using property of inverse trigonometry,



A—i—B)

tan"'A+tan'B = tan~! (
1—AB

Replacing the values of A byl—l1 and B by %

1 2
-1 1% _ iqp-1 11
tan 11+tan 11 tan - 1) 2)
11/\11

Solving it further,

1+2
=tan"?! —112
1
121
3
_ 1 11
= tan <121_2
121
3
_ 1) 11
= tan 119
121
=tan‘1(i><g)
11 119
_ tan-1 (3 *® ll)
119
33
()
an”* {5

=0.27

Thus, none of this match the result.
17. Question

Choose the correct answer

If cos 1™ Lcost Y =@, then 9x2 - 12xy cos B + 4y2 is equal to
2 3

A. 36
B. -36 sin% 6
C. 36 sin2 0

D. 36 cos2 0
Answer

We are given with,

X ¥
-1 -1
cos —+cos T ==80
2 3

We need to find the value of 9x2 - 12xy cos 6 + 4y2.

Using property of inverse trigonometry,
cos*A+ cos™!B= cos‘l(AB —J1—AzJ1— Bz)

Take Left Hand Side (LHS) of:



X ¥
cos =+ cosi==0
2 3

Replace A by ; and B by g

LY

X
LHS = cos™ =+ cos
2 3

s ot () 0)- [1-6) 1=

=cosH o - [1-5 [1-%
cos™H| —~ 2 5

—x2 lg—y2

—cost | X - St ks
6 4 g

Further solving,

(XY VA—X29 —y?
=cos | ——

6 2 B

We shall equate LHS to RHS,

_l(xy »W\,»'a——yz)_
COS —-—— =0

6 2 3

Taking cosine on both sides,

cos |cos i = cos0

2 3

Using property of inverse trigonometry,

cos(cos'l A) = A

So,
=:-g—\'4_X2V9_y2 = cosB@
6 2 3
Xy V4-x2,/9-—y?
=—— = cosB
6 6
Xy— V4 —x2,/9—y?
= cosB

6
By cross-multiplying,
=Xy - V(4 - x2) V(9 - y2) = 6 cos 8
Rearranging it,
= Xy - 6 cos 8 = V(4 - x?) V(9 - y?)
Squaring on both sides,
= [xy - 6 cos 812 = [V(4 - x2) V(9 - y2)I2

Using algebraic identity,



(a-b)?=a’+Db?-2ab

= (xy)? + (6 cos 8)? - 2(xy)(6 cos 8) = (4 - x*)(9 - y?)

= x2y2 + 36 c0os? 0 - 12xy cos 6 = 36 - 9x? - 4y? + x2y2
= x2y2 - x2y? 4+ 9x2 - 12xy cos B + 4y? = 36 - 36 cos? O
= 9x2 - 12xy cos 6 + 4y? = 36 (1 - cos? 0)

Using trigonometric identity,

sin2@ + cos26 =1

=sin20 =1-cos?0

Substituting the value of (1 - cos? 8), we get

= 9x2 - 12xy cos 0 + 4y? = 36 sin% O

18. Question

Choose the correct answer

If tan'! 3 + tan"1x = tan™! 8, then x =

A.5

o
r_hlp_;

q
C..—.
14

14

5

Answer

We are given with,
tanl3 +tanlx =tanl8

We need to find the value of x.

Using property of inverse trigonometry,

A—i—B)

tan"'A+tan'B = tan~! (
1—AB

Let us replace A by 3 and B by x.

tan '3 +tan 'x =tan?! (73 X )
1-(3)x)
—ta11‘1(3+x)
1—-3x

Since, according to the question
tan'l 3 + tan'l x = tan'l 8
So,

3+x
1-—3x

= tan~? ( ) =tan"'8

Taking tangent on both sides,



3+x
= tan [t:cm‘1 (1 — 3X)] = tan[tan~! 8]

Using property of inverse trigonometry,
tan(tanl A) = A

3+x g
= =
1-—-3x

Now, in order to find x, we need to solve the linear equation.
By cross-multiplying,

=3+ x = 8(1 - 3x)

=3 + X = 8- 24x

=24x+x=8-3

=225x =5
5
= X=—
25
1
= X=—
5

19. Question

Choose the correct answer

337w .
COS J is
q

The value of 51'11'1

3T
5

5

Sk

-
3

LN

Answer

We need to find the value of sin~* (cosﬂ).

3

N 33m I 3m
sin (COST) = sin (cos (6TII + ?))

[ 33 (6 N 3"1'[)]
v, C0S—— = Cos| 6M+ —
5 5

Using the trigonometric identity,
cos(6m+ B) = cos®O

As the function lies in | Quadrant and so it will be positive.

. _1( 331‘[) . -1( 3"1'[)
= sin”" (cos—— | = sin”" | cos—
5 5



Using the trigonometric identity,

T
cosB = sin (E — Ei)
. _1( 33T|.') . _1( . (TL’ ?:-TI.'))
== — | = _——
sin™" | cos = sin™" | sin 7T
Using property of inverse trigonometry,
sin'l(sin A) = A

m 31

2 5

bm—6m
T 10

T
10

20. Question

Choose the correct answer

1 STE‘ A . St 1
The value of cos cos— [+s5in S is

A.

2| A

A
-

LS

c, 1oz

3
D.0
Answer

We need to find the value of:
cos~ ! (cos BW) +sin™?! (sin STE)
3 3

Let us simplify the trigonometric function.

We can write as:
cosi—“ = cos(2n-3)
Similarly,
oo B o)

Since, cos (ZT[ — g) lies on IV Quadrant and cosine is positive in IV Quadrant.



-, COS (ZTII - g) = cosg

And since, sin (211— g) lies on IV Quadrant and sine is negative in IV Quadrant.

~, 8in (2’1‘[ — g) =— sing

= cos™* (COSSB—H) + sin™? (sini—ﬂ) = cos™? (cosg) +sin™?* (— sing)
=cos™! (cosg) —sin™?! (sing)

Using property of inverse trigonometry,

sin"l(sin A) = A and cos'l(cos A) = A

_1( 5’IT)+ ._1(. 51'[) m ™
= — — ===
COS c-:)s3 sin sm3 373
=0

21. Question

Choose the correct answer

-33] .
— |+ isequal to
5

sin { 2cos”!

24
25
Answer

We need to find the value of:

anfoor(-D)

Let cos™* (—E) =X

=]

Take cosine on both sides, we get

eos (-]
COSs | CO8 —g = C0S8X

Using property of inverse trigonometry,
cos(cost A) = A

3
= —— = (08X
5

We have the value of cos x, let us find the value of sin x.



By trigonometric identity,

sin2 x + cos? x =1
=sin2x = 1 - cos? x
= sinx = /1 — cos?x
Putting cosx = — E
3 2
- [-63
5
1 9
25
25—9
] 25
16
25
4
5
Now,

3
sin {2 cos™ ! (— E)} = 5in 2x

Using the trigonometric identity,

sin 2x = 2 sin x cos X

3
= sin{z cos‘l(— E)} =2s5inxcosx

Putting the value of sinx = = and cosx = — 5,
5 4 3
—2X—X—=
5
24
25

22. Question

Choose the correct answer

If 8 = 51'11‘1{51'11( —600° }} then one of the possible values of 8 is

A.

w A

w
2| A

-]

C. =

L]



-
D. - =
3

Answer

We are given that,

6 = sin’! {sin (-600°)}

We know that,

sin (2n-06) = sin (4n-06) =sin (bn-06) =sin (8n-06) =... =-sin 0O
As, sin (2m - 0), sin (4 - B), sin (6m - 8), ... all lie in IV Quadrant where sine function is negative.
So,

If we replace 6 by 600°, then we can write as

sin (4m - 600°) = -sin 600°

Or,

sin (4m - 600°) = sin (-600°)

Or,

sin (720° - 600°) = sin (-600°) ...(i)

[, 4m =4 x 180° = 720° < 600°]

Thus, we have

8 = sin’! {sin (-600°)}

=0 = sin’! {sin (720° - 600°)} [from equation (i)]
=0 = sin’! {sin 120°} ...(ii)

We know that,

sin (m-06) =sin(3n-0) =sin (51-6) =... =sin O
As, sin (1t - 0), sin (31 - 0), sin (51 - 6), ... all lie in Il Quadrant where sine function is positive.
So,

If we replace 8 by 120°, then we can write as

sin (- 120°) = sin 120°

Or,

sin (180° - 120°) = sin 120° ...(iii)

[, m=180° < 120°]

Thus, from equation (ii),

8 = sin’! {sin 120°}

=0 =sinl {sin (180° - 120°)} [from equation (iii)]
=0 = sin! {sin 60°}

Using property of inverse trigonometry,

sin"l (sin A) = A

=0 =60°



=>9=§

23. Question

Choose the correct answer

g 1—x" o 2x

—4cos +2tan , then x is equal to

-

1+x°

)

R
. 2x

If 3sin 1[ -
1+x°

T
3

1—-x

Answer

We are given that,

2x 1—x? 2x T
3 si -1( )—4 -1 +2t -1( )=—
sin™! | T3 cos™H T an~ (T—3) =3

We need to find the value of x.

We know that by trigonometric identity, we can represent sin 8, cos 6 and tan 6 in terms of tan 6.

Note,
120 ( 2tan® )
Sy = 1+tan2@
i~ 1—tan’0
oS8 =\1+tanzo
tan1 20 ( 2tan@ )
ML =\1 _"tanze

So, in the equation given in the question, let x = tan 0.

Re-writing the equation,

2x 1—x2 2% T
P -1 -1 _
3 sin (1+X2)—4cos (1+X2)+2tan (1_X2)—3

35 _1( 2tan® ) 4cos 1—tan®6 ot _1( 2tan® ) ™
= SR S - ==
S \T+tanzo % \1+wne W \1—tanze/ "3

Substituting the values of trigonometric identities,
s
= 3sin*(sin20) — 4 cos *(cos20) + 2tan"*(tan 28) = 3

Using the property of inverse trigonometry, we have

sin"l (sin A) = A, cos! (cos A) = A and tan'! (tan A) = A

TT
=:-3><29—4><29+2><2E}=§



T
=:-69—8E}+49=§

Now, in order to find the value of x, recall
X =tan 6

Substitute the value of 6 derived above,

T
= X=tan—
6

24. Question

Choose the correct answer

-1 .1 i
If 4cos™ x + sin " x = - then the value of x is

A.

f‘m |43'\|”_‘ 1| o

[

I

3

Answer

We are given that,

4 costx +sinlx=m..()

We need to find the value of x.

Using the property of inverse trigonometry,

1 -1 n
sin™" 0 + cos E}=§

=1 n -1
=sin"08=——cos "8

Replacing 0 by x, we get

T

= sin'x=——cos

X

Substituting the value of sin'! x in (i),

4costx+sinlx=n



™
= 4costx+ (5_ cos‘lx) =T

-1 n -1
= 4 cos x+§—cos X=T

= 3c0s " X=T——
2
= 3co0s "X=—
2
. m 1
= (0§ X=_—-X—
2 3
_1 ‘]T
= C0S "X=—
6

Taking cosines on both sides,

= cos[cos x| = cosg
i
= X = C0S—
6
V3
=X=—
2

25. Question

Choose the correct answer

If tan ! x+1, tan ™ x-1_ tan~}(—7). then the value of x is

x—1 X
A.0
B. -2
C.1
D. 2
Answer

We are given that,

tan™! (Hl) + tan~! (%1) = tan~}(-7) ...(I)

x—1
We need to find the value of x.

Using the property of inverse trigonometry,

A+B)

tan!A+tan !B = tan™?! (
1—AB

Replace A by E and B by %1

X+1 Xx—1
tall‘l(x+l)+tan‘1(x_ 1)=tan‘1 (X_1)+( X_)
-39 (55)

Putting this value in equation (i),

x+1 x—1
tan™* (—1) + tan™? (T) =tan"*(-7)



[ ED)+ )
- (35 (55)
Taking tangent on both sides,
(D550
-2 5%

Using the property of inverse trigonometry,

= tan"}(-7)

= tan~

= tan |tan” = tan[tan"2(-7)]

tan(tan'l A) = A
Y8
-G )
Cross-multiplying, we get
Xx+1 x—1 X+ 1y x—1
= (x— 1)+( X )2_7[1_(){—1)( X )]

Simplifying the equation in order to find the value of x,

=7

X(x+ D+ (x—D(x—1) X(x—1D—(x+D(x—-1)
x(x—1) 1 _7[ x(x—1)

Let us cancel the denominator from both sides of the equation.
=>X(Xx+1)+ (x-1)(x-1) =-7[x(x-1) - (x + 1)(x - 1)]
=>x2+x+ (x-1P =-7[x% - x- (x + 1)(x - 1)]

Using the algebraic identity,

(a-b)=a’+b?-2ab

And, (a + b)(a - b) = & - b?

X2+ X +X +1-2x=-7[x2-x-(x2-1)]
=22x2-x+1=-7[x%-x-x%+ 1]

=22x2-x+1=-7[1-x]

=>2x2-x+1=-7+ 7x

=22x2-x-Ix+1+7=0

=2x2-8x+8=0

=2(x2-4x+4)=0

>x2-4x+4=0

We need to solve the quadratic equation to find the value of x.
=>x2-2x-2x+4=0

=>X(x-2)-2(x-2)=0

=(x-2)(x-2)=0

=>xX=20rx=2

Hence, x = 2.



26. Question

Choose the correct answer

If cos™'x = sin~! x . then

FAY
v
|
—

A.

o -

w
o
1A

i
-

€
2

C.-l=x=

1
2
D.x>0

Answer

We are given that,

1 1

COoS™ X > sin* X

We need to find the range of x.

Using the property of inverse trigonometry,

-1 -1 o
sin” " x + cos X=E

Or,

T

= sintx= 3~ cos™ !

X

So, re-writing the inequality,

1 1

CoSs™ X > sin™* X

T

= cos x> >~ cos™!

X

Adding cos! x on both sides of the inequality,

T

= cos 'x+ cos x> >~ cos 'x+ cos?

X

-1 T
= 2 Cos x>§

Dividing both sides of the inequality by 2,

2cos‘1x> s
e
2 2

B3] =

-1 Tr
= C0S X>E

Taking cosine on both sides of the inequality,
T
= cos[cos™1x] > cos

1
= X>—
V2

= is the minimum value of x, while the maximum value of cosine function is 1.
J



1
= —<x<1
V2

27. Question

Choose the correct answer

a b
In a AABC, If Cis a right angle, then tan‘l[ ‘ ]_ ‘Ean_l[ ] —
b+c c+a

A.

wil A

=

h
=

[

Answer

We are given that,

AABC is a right-angled triangle at C.
Let the sides of the AABC be

AC=0b
BC =a
AB =c

By Pythagoras theorem, where C is the right angle,
(AC)? + (BC)? = (AB)?

=b? +a%=c?

Or,

a2+ b%2=c?..()

Using the property of inverse trigonometry,

A—i—B)

tan"'A+tan'B = tan~! (
1—AB

Replacing A by (i) and B by ( )

b
c+a

a b
= tan~? (m) +tan? (m) = tan~?!

a(c+a)+b(b+c)
) (b+c)(c+a)
(b+c)(c+a)—ab
(b+c)(c+a)

P ac +a? +b? + bc (b+c)(c+a)
= (b+ c)(c+a) % bc+ab+c2+ac—ab

=tan~




(@ (b . aZ+b?®+ac+bc
= tan~ (—) +tan” (—) = tan~
b+c c+a cZ+ac+bc

Substituting the value of a2 + b2 from equation (i),

. cZ+ac+hc
=tan | ———
c2+ac+bc

=tanl

a b T
= tan~? (m) +tan? (c " a) =7

28. Question

Choose the correct answer

1 4%]

The value of sin[ _sin is

A.

- &= Bl

242

1
33
Answer
We need to find the value of

(1 . _ V63
sin{—sin™ ——
4 8

LetsinTl1—=x

Now, take sine on both sides,

V63

sin [sin‘ ? = sinx

Using the property of inverse trigonometry,
sin(sin1 A) = A

N
= SINX = ——

Let us find the value of cos x.
We know by trigonometric identity, that
sin2x + cos?2x =1

=cos?x =1 -sin? x



=
= C0SX =4/ 1 —sin?x

Put the value of sin x,

We have,

1 _11,’63 . (1 )

sin{ —sin = sin|—-x
4 4

= sinG sin‘l%?) = sinf (1)

Using the trigonometric identity,

cos 2x = cos? X - sin? x

= cos 2x = (1 - sin?x) - sin? x [, sin? X + cos? x = 1]
= c0s 2x = 1 - sin? x - sin? x
= cos 2x = 1 - 2 sin? x

Or,

2 sin?x =1 - cos 2x

5 1—cos2x

=sin“x=—_-—
2

. 1—cos2x

=snx= |[———
2

Replacing x by x/4,

¥ Jl—cos(Zx%)

= sin— =
4 2

X
1-— cosi
2

Substituting the value of sinz in equation (i),

== X
: 1 ., _q1v63 1-cos "
sm(—sm 1"—) = J:...(II)
4 g 2



Using the trigonometric identity,

Cos 2x = cos? X - sin? x

= c0s 2X = cos? x - (1 - cos? x) [, sin2 X + cos? x = 1]
= Ccos 2X = cos? x - 1 + cos?x

=cos2x =2 cos?x -1

Or,

2 cos?x =1 + cos 2x

1+ cos2x
2

1+ cos2x
= COSX = ’f

Replacing x by x/2,

x Jl+cos(2x%)

= cos’x =

= coSs- =
v z

1+ cosx
B 2

Substituting the value of cosg in equation (ii),

—_—

1+ cosx
1 _1\.@ 1= 2
sin 45111 5 )= . 5

Put the value of cos x as found above, cos x = 1/8.




—
o] L
—

(A ]

e
0 || |
[#%)

B || =

"—‘ (==

2\.@
29. Question

Choose the correct answer
- i

Cot[ = 2cot™ SJ =
|

A. 4

B. 6

C.5

D. none of these
Answer

We need to find the value of
T
o -1

cot (4 2 cot 3)

Llet2cotl3 =y

Then,
_ ¥
cot™13==2
2
y
=cot==3
2

Substituting 2 cot1 3 =y,

™ ™

R -1 — _—
cot(4 2 cot 3) —cot(4 y)

Using the trigonometric identity,

cotAcotB+1

ttA—-B)=———
cot( ) cotB —cotA

So,

cotgcoter 1

n

™

= cot (z —2cot™? 3) =
coty — cot

)

We know that,



t1T 1
cot—=
4

= cot(z— 2c0t‘13) — L)
4 coty—1

We know that, by trigonometric identity,

2tany
tan2y = T tantv v

Take reciprocal of both sides,

1 1—tan®y
tan2y  2tany

1—tan®y
= cot2y = Stanv any

1
[" tan 2y = cot Zy]

1
L cotZy
= cot2y = ————
ZX——
coty

cot’y—1
cot?y
1

2% coty

cot?’y—1

2 coty
Puty = y/2.

cot2L — 1

Putting the value of cot y in equation (i),

cot2y — 1
ﬁzj_"‘l
T ?.CO’EE
= cot(—— 2cot‘13) ==y
4 cotEE—l
—y_l
?.CO’EE
cotz%— 1+ Zcot%
vy
2-:-::ot2
cotz%— 1- 21:0‘%
B Zcot%
c0t2%+2cot%—
TV y_
-:-::ot2 2-:-::ot2 1

Put the value of cotg = 3 derived above and also cotzg =32=9,

9+2x3—-1
T 9-—2x3-1



30. Question

Choose the correct answer

If tan"! (cot ) =2 6, then 8 =

AT
3
B.+ 1
4
c.+r
6

D. none of these

Answer

We are given that,

tan'! (cot ) = 26

We need to find the value of 6.
We have,

tan'! (cot ) = 26

Taking tangent on both sides,

= tan [tan] (cot )] = tan 26
Using property of inverse trigonometry,
tan(tan'l A) = A

= cot 6 = tan 26

Or,

=tan 20 = cot 6

Using the trigonometric identity,

tan 20 2tan®
an ey = 1—tanZ8
2tanB ‘0
=——=2(0
1—tan20

Using the trigonometric identity,

1
cotb=——
tan®
2tan® 1

=1 =
1—tan?@ tan®

By cross-multiplying,



stan® x2tan®=1-tan? O
s2tan?6=1-tan?0
s2tan?@ +tan?06 =1

>3tan?0=1

tan@ L
=tan“ B =
3

tan 6 +1
=tanf=+—
V3
Andtanz=71_.
& v 3

T
= tanb = itang
Thus,

0==

ol A

31. Question

Choose the correct answer

7

.y 2a [ 1-a? o 2% ,
If s1n [ : ]— cos = tan [ J where a, x € (0, 1) then, the value of x is

l+a“

2a

D.

l1-a-
Answer

We are given that,

[ 2a Lf1-a? L 2x
sin (1_,_32)""305 Tooz) = tan (1—){2)

Where, a, x € (0, 1).

We need to find the value of x.

Using property of inverse trigonometry,

2a
2tan~ta =sin™! ( )
1+ a2

2x
2tan"'x =tan? ( )
1—x2

Then, we can write as



[ 2a Lf1-a? L 2x

s2tanla+2tanla=2tanlx
s4tanla=2tanlx
Dividing both sides by 2,

4tan~'a 2tan"'x
22

=

=2 tanla = tan’l x

Using property of inverse trigonometry,

2a
2tan~ta =tan"? ( )
1—at

Then,

= tan~! ( ) =tan~'x

1—3a2

Taking tangent on both sides,

= tan [t:cm‘1 ( )] = tan[tan~1x]

1— a2
2a

=X
1—at

Or,

2a

= X=—
1—2a2

32. Question

Choose the correct answer
The value of sin [-2{‘[311_1 0.?5)] is equal to

A. 0.75

B.1.5

C. 0.96

D.sin1 1.5

Answer

We need to find the value of sin (2(tan’l 0.75)).
We can re-write the equation,

sin (2(tan'! 0.75)) = sin (2 tant 0.75)

Using the property of inverse trigonometry,

2X
2tan~'x =sin™! ( )
1+ x2

Replace x by 0.75.

2><O.75)

2tan™10.75 = si _1(—
an sin™ (T 752



So,
sin (2(tan! 0.75)) = sin (2 tan'! 0.75)

2x0.75 ))

in(2(tan™'0.75) ) = si ("1(7
= sin(2(tan )) = sin{sin 1T 0752

~sin(sin (552672
=SS T \T ¥ 05626

= stn (o™ (15556))
= §ln| sin 15626

= sin (2(tan’! 0.75)) = sin (sin'! 0.96)

Using the property of inverse trigonometry,
sin(sin'1 A) = A

= sin (2(tan"! 0.75)) = 0.96

33. Question

Choose the correct answer

-~
-

|fX>>Lthen2tmf4x—shf4[ qusequmto

1+x°

A. 4tan~1x

B.0O

C.

o | A

D.n
Answer
We are given that, x > 1.

We need to find the value of

2x
2tan"'x +sin™! ( )
1+ x2

Using the property of inverse trigonometry,

2x
2tan"'x =sin?! ( )
1+ x2

We can substitute sin=* (i) by 2 tan'! x.
1+x2
So,
-1 ia—1 2x -1 -1
2tan™ " x + sin —— |=2tan" " x+ 2tan"" x
1+ x2

=4 tanl x
34. Question

Choose the correct answer
The domain of COS‘I(XE —4)is

A. [3, 5]



B.[-1, 1]

C. [—Jf. —\E:.u[ﬁ. J5 |

D. [_\/___—\E:.m[—\/’?_f]

Answer

We need to find the domain of cos! (x2 - 4).

We must understand that, the domain of definition of a function is the set of "input" or argument values for
which the function is defined.

We know that, domain of an inverse cosine function, cos™ x is,
x€[-1, 1]

Then,

(x? - 4) €[-1, 1]

Or,

1=x-4=1

Adding 4 on all sides of the inequality,
l+4=<x2-444<1+4

»3=x2<5

Now, since x has a power of 2, so if we take square roots on all sides of the inequality then the result would
be

= +V3=x=<=+V5

But this obviously isn’t continuous.
So, we can write as

x € [-V5,—v3] U [V3.V5]

35. Question

Choose the correct answer

3

The value of tan| cos™ —
3

a1y
+tan~ — | is

19

We need to find the value of



3 1
tan(cos™!'=+tan! —)
( 5 4

Using the property of inverse trigonometry,

. _l(x,l—x?)
Ccos "X =1tan

Just replace x by 3/5,

[41-()

43 tan-
cos~'— = tan
5

3
5
So,
9
3 1 Jl——‘ 1
tan (cos‘lg +tan? E) = tan| tan?! TZB + tan‘lg
5
25— 9
25 1
— =1 el il
=tan| tan 3 +tan F
5
16
25 1
_ -1 1t
=tan| tan 3 + tan 2
5

4
= 1

_ -1l 5 -1-

=tan| tan 3 + tan 2
5

4 5 1
= tan (tan‘l (E % 5) + tan‘lg)

4 1
=tan|tan '=+ tan! —)
( 3 4

Using property of inverse trigonometry,

tan!A+tan !B = tan™?! ( AtD )
B 1—AB
4 1
=tan|{ tan?! 373
1-(3)(3)
3/\4
16+ 3
— -1 12
= tan (tan 5 =3
12
19
_ -1 12
=tan| tan B
12



19
= tan tan‘l—)
(tan~ 5

Using the property of inverse trigonometry,

tan(tan'l A) = A

. ( L3, 1) 19
= 1an|cos “— an -~ — | =—
5 4) 8

Very short answer

1. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of sin_l[ — +cos

|
o | =
S

-

Answer

Let sin'! (-v3 /2) = x and cos™ (-1/2) = y

=sinx = (-V3/2)and cosy = -1/2

We know that the range of the principal value branch of sin'! is (-n/2, n/2) and cos! is (0, ).
We also know that sin (-n/ 3) = (-V3/ 2) and cos (2n/3) = -1/2

- Value of sin"! (-v3/2) + cos? (-1/2) = -/3 + 21/3

=1/3

2. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the difference between maximum and minimum values of sin"1x for x € [-1, 1].
Answer

Let f (x) = sin'! x

For x to be defined, -1 = x =<1

For-1=x=<1,sin!(-1) = sin! x = sinl (1)

=-n/2 <sinl x = /2

=-m/2 <f(x) =mn/2

Maximum value = /2 and minimum value = -1/2

. The difference between maximum and minimum values of sin'l x = /2 - (-n/2) = 2n/2
=T

3. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

1 . 1 _3m
y+sin"lz =

If sin ™' x +sin” , then write the value fx + y + z.

Answer



Given sin'l x + sinly + sin'l z = 3n/2
We know that maximum and minimum values of sin"! x are n/2 and -n/2 respectively.

=sint x +sinly +sinlz=m2+mn2+ 12

=>sinl x = /2, sinly = /2, sin'l z = n/2
=>2x=1ly=1,2z=1
=>2X+y+z=1+1+1=3
WX+y+z=3

4. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

-

If x > 1, then write the value of 31'11_1[ _ J in terms of tan! x.

1+x°
Answer

Givenx > 1

=tan6 >1
Tep<l
:)_ —
4 2

Multiplying by -2,
s
= —m < —20 < ——
2
Subtracting with m,

T
=:-0<1T—21T<E

We know that sin 28 = —-t228
1+tan®8
Put tan 6 = x
20 2x
= s5in26 =
1+x2
Forx > 1,
= sin(m—28) = ——
( ) 1+x2
N 2X
= mT— 206 = sin (—)
1+ x2

Since x =tan 6

=0 =tanlx

S 2X .
~ sin =m—2tan" " x
1+ x2

5. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



2

_ ] in terms of tan”! x.

If x < 0, then write the value of cos'l

1+x
Answer

Givenx <0

=>-0<Xx<0

Letx =tan 6

=-0<tan B <0
Tcp<o
:;.__
2

Multiplying by -2,
=>-n<-20<0

1—tan® B
1+tan® 8

We know that ¢gs20 =

Put tan 6 = x
1—x2
1+ x2

1—x2
~20 = cos*
= cos (1+x2)

= cos(—28) =

Since x =tan 6

=0 =tan!x

. 1—x? .
& COS =—-2tan"" X
1+ x2

6. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

B
Writ the value of tan'l X+ mn'1 ( — | forx > 0.

X

Answer

Giventanlx +tan?! (3) forx >0
X

We know that tan™*x + tan"y = tan™* (%)lf xy>1

1
1 X+ E
= tan *x +tan? (E) =tan™? — 7
1 —X+§
2 +1
=tan~?! X
0
= tan! (w)
™



1 T
~tan~!'x +tan~? (—) =—
X 2

7. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of tan'l X+ mn'1 for x < 0.

X

Answer

Given tan'l x + tan'l (1/x) forx < 0

We know thattan 'x +tan 'y = —m+ tan™?! (%)lf x<0, y<0

1
1 X+£
= tan"'x +tan?! (E) = —m+tan? i
1 —X+£
X2+ 1
=—m+tan? x
0

=-n + tan’! (w)

= -T + /2

= -1/2

~tanl x + tanl (1/x) = -n/2

8. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

What is the value of cgs_l

2n) . 4 . 27
cos— |+sm | sm— |?
3 3

Answer

We know that sin! (sin 8) = n - 6, if ® € [/2, 3/2] and cos™! (cos 8) = 8, if 6 € [0, n]

. _ 2m . . 2T
Given cos™?! (cos?) +sin™?! (5111?)

21T+( 21T)
“37\" 3
=1

_1( 21T)+ . -1( . ZTE)
~cos (cos— |+ sinT | sin— | =T
3 3

9. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

2 L (1-%?
-+ CO05

=

If -1 < x < 0, then write the value ofsin'l[
1+x°

1+x°




Answer

Given-1<x <0

P 2x ): -1 s = = _1(1—:\'2): _ -1 r
We know that St (1”2 2tan” " x,iff—l<=x<1land cos™ (3 2tan™ " x, if
co<x=0

2x _q1 f1-x%
) + cos™! ( )
1+x2 1+x2

=2tanlx-2tanlx

Given gin—t (

=0
10. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Writ the value of sin (cot™! x).

Answer

Given sin (cot! x)

Letcotlx =6

=x =cotb

We know that 1 + cot? 8 = cosec? 6
=1 + x% = cosec?

We know that cosec 8 = 1/sin 6

=1+x%x%=

sin? 8
1
+x2

= sin’0 = 1

= sinf =
1+ x2

1
V1+x2

~ sin(cot™1x) =

11. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:
1 g1
—]—25111 1[—].
2 2

Let cos'! (1/2) = x and sin! (1/2) = y

Write the value of cos'l

Answer

= cos x =1/2and siny = 1/2

We know that the range of the principal value branch of sin'! is (-n/2, n/2) and cos! is (0, ).
We also know that sin (r/ 6) = 1/2 and cos (1/3) = 1/2

= Value of cos (1/2) + 2sint (1/2) = /3 + 2(1/6)

=1/3 + /3



= 2n/3
. Value of cos! (1/2) + 2sin’! (1/2) = 2n/3
12. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the range of tan™1x.

Answer

We know that range of tan'l x = (-n/2, n/2)
13. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of cos™1(cos 1540°).
Answer

Given cos™! (cos 1540°)

= cos'l{cos (1440° + 100°)}

= cos1{cos (360° x 4 + 100°)}
We know that cos (2nt + 6) = cos 6
= cos'1{cos 100°}

We know that cos™! (cos 8) = 6 if 8 € [0, n]
= 100°

- cos! (cos 1540°) = 100°

14. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of sin™1 (sin(-600°)).
Answer

Given sin’ (sin (-600°))

= sin’! (sin (-600 + 360 x 2))

We know that sin (2nm + 8) =sin 6
= sin (sin 120°)

We know that sin'l (sin 8) = n- 8, if 6 € [1/2, 31/2]
= 180° - 120°

= 60°

= sinl (sin (-600°)) = 60°

15. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



Write the value of ¢os

o1
251111—].
3

Answer

Given cos (2sin’l 1/3)

We know that sin™*x = tan™?

V1-x=
1
=cos| 2tan? 3 .
1
1-(3)
1
-1_3
=cos| 2tant ——=
2\-@
3
(2 )
=cos|2tan™ ——=
2\-@
We know that 2 tan~1x = cogs~? 1—x:
1+x

1 7
e 2 i _1—) = —
Ccos ( 51n 3 9

16. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of sin"1(1550°).

Answer

Given sin! (sin 1550°)

= sin’! (sin (1440° + 110°))

= sin’! (sin (360° x 4 + 110°))

We know that sin (2nm + 6) = sin 6

= sin’! (sin 110°)

We know that sin'! (sin 8) = n- 8, if 8 € [1/2, 31/2]
= 180° - 110°

= 70°



- sinl (sin 1550°) = 70°
17. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

1
—cos  — |-
2 5

. 44
Evaluate: sin

Answer
Given sin (1/2 cos! 4/5)

We know that COS_]'X = Ztan_l E
X

| X 2tan~!
=35In| — x an
2

1
= sin tan‘l—)
(tan~23

1

We know that tan™ x = sin~

\.'I1+}.'2
1
= sin| sin™?! -
1
1+(§)
1
__3
V10
3
1
V10
. (1 _14) 1
~ sin (S cos™ = =755

18. Question
Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

. -1
Evaluate: sm[ tan

| W

Answer

Given sin (tan'l 3/4)

1
\.'I 1+x2

We know that tan™'x = sin~

NN

= sin| sin™?!
2

1+ (3)

We know that sin (sin'l ) = 6



UGl W s s w

3 3
-~ sin tan‘l—) =
( 4 5

19. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

3T

Write the value of cos'l tan

Answer

Given cos! (tan 3n/4)

= cos™! (tan (m - n/4))

We know that tan (- 6) = - tan 6
= cos’! (-tan n/4)

= cos’! (-1)

We know that cos! x = nt

~.cos! (tan 3n/4) = n

20. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of cos

. I
2sin” 2 |
A

Answer

Given cos (2sin’l 1/2)

= Cos (2% 1/6)

= cos (1/3)

=1/2

s cos (2 sint 1/2) = 1/2
21. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of cos™1(cos 350°) - sin"1(sin 350°).

Answer
Given cos™! (cos 350°) - sin'! (sin 350°)
= cos'! [cos (360° - 10°)] - sin"! (sin (360° - 10°)]

We know that cos (21 - 6) = cos 6 and sin (2 - 8) = -sin 6



= cos’! (cos 10°) - sin! (-sin 10°)
We know that cos® (cos ), if 8 € [0, ] and sin (-8) = -sin 6
= 10° - sin’! (sin (-10°))

We know that sin'! (sin 8) = 0, if 6 € [-/2, /2]

= 10° - (-10°)
= 10° + 10°
= 20°

. cos™1 (cos 350°) - sin'! (sin 350°) = 20°
22. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

-

Write the value of cos® [lc@s_l EJ .
2 5

Answer

Given cos? (1/2 cos™! 3/5)
We know that cos iy = 2 pps? Jﬂ
2

2 1 1 1+g
=co8°| =X 2c087" |——
2 2

( )2
= (cos| cos™! |—
10
2
8
1410
4
5
1 3 4
- cos? (— cos‘l—) =—
2 5 5

23. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If tan~'x = tan~' v = —, then write the value of x + y + xy.
!

Answer

Given tan'l x + tan'ly =n/4

We know that tan™t x + tan~!y = tan™* (H.v)

1—xy



. _1(;t+y) T
= tan =—
1—xy 4
X+vy
:fa?l_l( - )=ran‘1 1
1=y (1)
x+y
1—xy

=2X+y=1-xy
=2X+y+xy=1
SXt+y+xy=1
24. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of cos™ (cos 6).

Answer

Given cos! (cos 6)

We know that cos™ (cos 8) = 2n - 8, if 8 € [, 2n]
=2n-6

~.cos! (cos 6) =21 -6

25. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of sin_l

3
Cos— |.
9

Answer

Given sin’! (cos n/9)

We know that cos 6 = sin (/2 - 6)
= sin’! (sin (/2 - 1/9))

= sin’! (sin 71/18)

We know that sin' (sin 6) = 8

= 71/18

~ sin’! (cos m/9) = 7r/18

26. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

WA

. J . - 1
Write the value of sin { —sin 1[ -= ]}

Answer

Given sin (/3 - sin’! (-1/2))



We know that sin'l (-6) = -sin"'1 8

= sin (/3 + sin'! (1/2) 0)

= sin (/3 + n/6)

= sin (11/2)

=1

sosin (/3 - sint (-1/2)) = 1

27. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

_ _ 157
Write the value of tan ! { tan

=)

Answer

Given tan! {tan (15m/4)}

= tan'! {tan (4n - n/4)}

We know that tan (2m - 6) = -tan 6
= tan! (-tan m/4)

= tan (-1)

= -n/4

. tan’! {tan (151/4)} = -/4

28. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:
1 J

1

Write the value of 2sin™ —+ cos_1 ( -

|J||-—l
1 |

Answer
Given 2sin’l 1/2 + cos? (-1/2)
=1/6 + (- 1/3)

mT—6m—2n

= 2sin’! 1/2 + cos (-1/2) = 51/6
29. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

14 _
Write the value of tan i —tan !
b

a—b]
a+b .

Answer



. _qa _ a—b
Given tan™*= — tan™* (—)
b a+b

a_a—b
1 b a+ b

1+ () (@)

[a® + ab — ab + b?

=tan~

P b(a+b)
= tan ba+ b2 +a?—ab
b(a+b)
a2+ 12
= tan EeEE
=tanl (1)
=1/4

30. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

27
Write the value of cos_l ( cos_J.

Answer

Given cos™ (cos 2m/4)

We know that cos™ (cos 8) = 8
= 21n/4

=1/2

= cos’L (cos 2m/4) = n/2

31. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Show that sin ( 2xaf1 —x’ ) = 2sin"'x.

Answer

Given LHS = sinl (2x - V (1 - x2))
Let x =sin O

= sin’l (2sin 6 v (1 - sin? 6))

We know that 1 - sin2 8 = cos2 6

sin'l (2 sin 6 cos ©)
= sin’! (sinZ 9)

=20

=2 sinl x

= RHS



sosinl (2x -V (1 - x2)) = 2 sinl x
32. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

. . 3w
Evaluate: sin S11 —

Answer

Given sin'! (sin 3mn/5)

We know that sin'! (sin ) = n - 6, if 8 € [1/2, 3n/2]
=1 - 3n/5

= 2mn/5

. sin’! (sin 3n/5) = 21/5

33. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If tan'l(ﬁ)— cot™'x = ; find x.

-

Answer

Given tan'! (v3) + cot! x = n/2

= tanl (V3) = m/2 - cot! x

We know that tan'l x + cotl x = n/2
= tan! v3 = tan'! x

X =vV3

34. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

tcostx =

| &

.1 7
If sin 1[ 3 , then find x.

[

Answer

Given sin'! (1/3) + cos! x = n/2

= sin"l (1/3) = n/2 - cos! x

We know that sin'! x + cos! x = n/2
= sin"l (1/3) = sin'l x

S x=1/3

35. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



/1 _
Write the value of sin 1[ — | —¢cos

Answer
Given sin'l (1/3) - cos™® (-1/3)

We know that cos! (-6) = -cosl 6

- ()-r-r (3]
- ()-r ()

1 1
= gsin~?! (—) + cos™? (—) -1
3 3

1 1 I
B Y e -1({_~“\___
~ Sin (3) cos ( 3) 2

36. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If 4sin"! x + cos™! x = m, then what is the value of x?

Answer

1

Given 4 sin'l x + cosl x =n

We know that sin'l x + cos x = /2

. _1 n'- . _1
= 435in x+§—sm X =T
. _1 n'-
= 35NN X =T ——
2
. _1 n'-
= 35N X =—
2
. _1 H
=5 x =—
6
11

= sin~tx =sin~
SLx=1/2

37. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If x < 0,y < 0 such that xy = 1, then write the value of tan! x + tan™ly.
Answer

Given if x <0,y <O suchthatxy =1

Also given tan'l x + tan'ly



We know that tan™* x + tan™ y = tan™?* (fﬂ)
.

(X+Y
=—m+tan" ( )
1—xy
+t ‘1(x+"v)
=—m+tan
1-1
=-n + tan! (w)
L
= —TI —
2
T
2
T
~tan"lx +tan"ly = —3

38. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

3
What is the principal value of sin_l[—_]?
n

-

Answer

Given sin'l (-v3/2)

We know that sin' (-8) = -sin! (8)

= -sin! (V3/2)

= -1/3

~sinl (+v3/2) = -/3

39. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

. 1
Write the principal value of sin~! [ — ]
5

Answer

Given sin'l (-1/2)

We know that sin'l (-6) = -sin’l (8)
= -sin (1/2)

= 1/6

osin (-1/2) = /6

40. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

| . 2m
+ 511 S —
3

2n
COs—
3

Write the principal value of cos_l




Answer

We know that sin! (sin 8) = n - 6, if ® € [/2, 3/2] and cos™! (cos 8) = 8, if 6 € [0, n]

. _ 2m . . 2w
Given cos™! (cos ?) + sin~? (sm?)

2H+( 2}1)
“37\" 73
=T

_1( 2n)+ . _1( . 2}1)

. COS cos— sin sin—|=m
3 3

41. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

1
Write the value of tan[Z‘ran_l —J '

Answer

Lettan 6 = 1/5

Given tan (2 tan'! 1/5) = tan 26

We know that tqn 28 = —8n8
1-tan2d
1
- 2 X E
- 1
=35
2
_5
24
25
5
12

1 5
~tan(2tan™' o) = —
an(2tan 5) 2

42. Question
Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:
1
_E )

Write the principal value of tan (1) + cos !

Answer
Given tan! (1) + cos™® (-1/2)

We know that cos! (-8) = -cos! 6

5ol

o 2m

+
4 3



3m+ 8w

12
11w
12
1 11m
~tan™'(1) + ‘1(——)=—
an~*(1) + cos > 3

43. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

2cos

Write the value of tan ™ {Zsm

Answer

Given tan'! {2 sin (2 cos’! v3/2)}
= tan! {2 sin (2 cos ! cos n/6)}

= tanl {2 sin (2 x n/6)}

= tan'! {2 sin (1/3)}

=tanl {2 x V3/2}

=tan’! {v3}

=1/3

~tan"t {2 sin (2 cos! v3/2)} = /3
44. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the principal value of tan . /3 + cot™! 43 -
Answer
Given tan! v3 + cot! v3

We know that tan'! v3 = /3 and cot! v3 = /6
T T

=— 4+ —
3 6

2Zm+m
6

3
6

=T1/2
45. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the principal value of cos™}(cos 680°).

Answer



Given cos™! (cos 680°)

= cos’! (cos (720° - 40°))

= cos™ (cos (2 x 360° - 40°))
= cos’! (cos 40°)

= 40°

. cos™! (cos 680°) = 40°

46. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

i

Write the value of sin ™" [ sin

Answer

Given sin’! (sin 3m/5)

= sin’! [sin (1 - 21/5)]

= sin’! (sin 21/5)

= 2n/5

2 sin (sin 31/5) = 2n/5

47. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the

question:

1
Write the value of sec_l[ — ]
“»

Answer
We know that the value of sec’! (1/2) is undefined as it is outside the range i.e. R - (-1, 1).
48. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

1 l4n

Write the value of cos™ | cos

Answer

Given cos™! (cos 14n/3)

= cos™! [cos (4m + 2n/3)]
= cos! (cos 21/3)

= 21/3

~ cos™! (cos 141/3) = 21/3
49. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



Write the value of cos(sin_l =1.

X +cos”] X).| X

Answer

Given |[x] =1

=>+x=<1

=>x=slor-x=s1

=>x=<lorx=-1

= x € [-1, 1]

Now also given cos (sin"! x + cos! x)
We know that sin'l x + cos'! x = n/2

= cos (sint x + cos! x) = cos (n/2) = 0
50. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

-1

1
. : Sin” X +cos” X
Write the value of the expression tan , when  — ﬁ
2 2

Answer

sin"tx+cos tx i
————— |whenx =

<
Mlm'l

Given tan (

/3 /3
N -1V
5 + cos 5

2

1

sin"lx +costx sin”
= tan 5 = tan

We know that sin'l x + cos x = m/2
= tan (r/4)

sinTtx +costx
. tan 2 =1

51. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

- 1
Write the principal value of sin 1{ COS| sin 1: ]}

Answer

Given gin™?* [cos (sin_l;)}
=sin~! {cos (sin‘l (sin g))}
=sin™* {cos (g)}

= sin’l (1/2)



" _1 " jr[
= sin (sm —)
3

3
52. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

3
The set of values of cosec™ [ ]

n
Answer

We know that the value of cosec! (v3/2) is undefined as it is outside the range i.e. R-(-1,1).
53. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

B
Write the value of tan_l [ _J for x < 0 in terms of cot™1(x).
X

Answer

Given tan! (1/x)

1
=tan™?! (—;)fm' x<0

1
=—tan™! (—)
X

= cot! x

= - (n-cotlx)
=-mn+ cotl x
54. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Write the value of cot™1(-x) for all x € R in terms of cot™1x.

Answer

We know that cot™! (-x) = n - cot™! (x)

. The value of cot! (-x) for all x € R in term of cot! x is m - cot™? (x).
55. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

tan'l X+ cc)t'1 X

. 1
Write the value of cos ,when x =———.
3 3
Answer
. tan lx+cot™lx i 1
Given cops |——————— ) when x = v
N



We know that tan'l x + cot! x = n/2
= cos (1/6)

= v3/2

56. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

If cos(tan_l X+ cgt_l 3 ) =0, find the value of x.

Answer

Given cos (tan'! x + cot!v3) =0

= cos (tan'! x + cot'! v3) = cos (n/2)
=>tan! x + cot! v3 = n/2

We know that tan'l x + cot! x = n/2
X =v3

57. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

-

_ a1
Find the value of 2sec 12—511]1 1[—}-

Answer

Given 2 sec’! 2 + sin'l (1/2)

= 2 sec’! (sec n/3) + sin'! (sin n/6)
= 2 (n/3) + 1/6

= 5n/6

58. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

1 1

If cos| sin. —+cos X | =0, find the value of x.

| b

Answer

Given cos (sin! 2/5 + cos1 x) = 0

= cos (sin'! 2/5 + cos™! x) = cos (n/2)
=sin"l 2/5 + cos! x = /2

We know that sin'! x + cos! x = n/2
Sx=2/5

59. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:



1

Find the value of ¢cos™ | cos

13TE]

Answer

Given cos™! (cos 13n/6)
= cos’! [cos (2m + 1/6)]
= cos’! (cos 1/6)

= 1/6

. cos™! (cos 13n/6) = /6
60. Question

Answer each of the following questions in one word or one sentence or as per exact requirement of the
question:

Find the value of tan_l [tan%}
8

Answer

Given tan! (tan 9n/8)
= tan'! [tan (n + 1/8)]
= tanl (tan /8)
=1/8

- tan’! (tan 9r/8) = /8
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