# Chapter 15: Properties of Triangles Exercise – 15.1



(iv) AC

# **Question: 2**

Take three collinear points A, B and C on a page of your note book. Join AB. BC and CA. Is the figure a triangle? If not, why?



# Solution:

No, the figure is not a triangle. By definition a triangle is a plane figure formed by three nonparallel line segments

# **Question: 3**

Distinguish between a triangle and its triangular region.

# Solution:

A triangle is a plane figure formed by three non-parallel line segments, whereas, its triangular region includes the interior of the triangle along with the triangle itself.

# **Question: 4**

D is a point on side BC of a  $\triangle$ CAD is joined. Name all the triangles that you can observe in the figure. How many are they?



# Solution:

We can observe the following three triangles in the given figure

(i) ∆ABC

(ii) ∆ACD

(iii) ∆ADB

# Question: 5

A, B. C and D are four points, and no three points are collinear. AC and BD intersed at O. There are eight triangles that you can observe. Name all the triangles



# Solution:

(i) ∆ABC

- (ii) ∆ABD
- (iii) ∆ABO
- (iv)  $\triangle BCD$
- (v) ∆DCO
- (vi) ∆AOD
- (vii) ∆ACD
- (viii) ∆BCD

# **Question: 6**

What is the difference between a triangle and triangular region?

# Solution:

Plane of figure formed by three non-parallel line segments is called a triangle where as triangular region is the interior of triangle ABC together with the triangle ABC itself is called the triangular region ABC

# **Question: 7**

Explain the following terms:

- (i) Triangle
- (a) Parts or elements of a triangle
- (iii) Scalene triangle
- (iv) Isosceles triangle
- (v) Equilateral triangle
- (vi) Acute triangle
- (vii) Right triangle
- (viii) Obtuse triangle
- (ix) Interior of a triangle
- (x) Exterior of a triangle

#### Solution:

(i) A triangle is a plane figure formed by three non-parallel line segments.

(ii) The three sides and the three angles of a triangle are together known as the parts or elements of that triangle.

(iii) A scalene triangle is a triangle in which no two sides are equal.



(iv) An isosceles triangle is a triangle in which two sides are equal. Isosceles triangle



(v) An equilateral triangle is a triangle in which all three sides are equal. Equilateral triangle



(vi) An acute triangle is a triangle in which all the angles are acute (less than 90°).



(vii) A right angled triangle is a triangle in which one angle is right angled, i.e. 90°.



(viii) An obtuse triangle is a triangle in which one angle is obtuse (more than 90°).



(ix) The interior of a triangle is made up of all such points that are enclosed within the triangle.

(x) The exterior of a triangle is made up of all such points that are not enclosed within the triangle.

# **Question: 8**

In Figure, the length (in cm) of each side has been indicated along the side. State for each triangle angle whether it is scalene, isosceles or equilateral:



#### Solution:

- (i) This triangle is a scalene triangle because no two sides are equal.
- (ii) This triangle is an isosceles triangle because two of its sides, viz. PQ and PR, are equal.
- (iii) This triangle is an equilateral triangle because all its three sides are equal.
- (iv) This triangle is a scalene triangle because no two sides are equal.
- (v) This triangle is an isosceles triangle because two of its sides are equal.

#### **Question: 9**

There are five triangles. The measures of some of their angles have been indicated. State for each triangle whether it is acute, right or obtuse.



#### Solution:

- (i) This is a right triangle because one of its angles is 90°.
- (ii) This is an obtuse triangle because one of its angles is 120°, which is greater than 90°.
- (iii) This is an acute triangle because all its angles are acute angles (less than 90°).
- (iv) This is a right triangle because one of its angles is 90°.
- (v) This is an obtuse triangle because one of its angles is 110°, which is greater than 90°.

## Question: 10

Fill in the blanks with the correct word/symbol to make it a true statement:

(i) A triangle has \_\_\_\_\_ sides.

- (ii) A triangle has \_\_\_\_\_ vertices.
- (iii) A triangle has \_\_\_\_\_ angles.
- (iv) A triangle has \_\_\_\_\_ parts.
- (v) A triangle whose no two sides are equal is known as \_\_\_\_\_
- (v0 A triangle whose two sides are equal is known as \_\_\_\_\_
- (vii) A triangle whose all the sides are equal is known as \_\_\_\_
- (viii) A triangle whose one angle is a right angle is known as \_\_\_\_\_
- (ix) A triangle whose all the angles are of measure less than 90' is known as \_\_\_\_\_
- (x) A triangle whose one angle is more than 90' is known as \_\_\_\_\_

# Solution:

- (i) three
- (ii) three
- (iii) three
- (iv) six (three sides + three angles)
- (v) a scalene triangle
- (vi) an isosceles triangle
- (vii) an equilateral triangle
- (viii) a right triangle
- (ix) an acute triangle
- (x) an obtuse triangle

#### Question: 11

In each of the following, state if the statement is true (T) or false (F):

- (i) A triangle has three sides.
- (ii) A triangle may have four vertices.
- (iii) Any three line-segments make up a triangle.
- (iv) The interior of a triangle includes its vertices.
- (v) The triangular region includes the vertices of the corresponding triangle.
- (vi) The vertices of a triangle are three collinear points.
- (vii) An equilateral triangle is isosceles also.
- (viii) Every right triangle is scalene.
- (ix) Each acute triangle is equilateral.
- (x) No isosceles triangle is obtuse.

#### Solution:

- (i) True.
- (ii) False. A triangle has three vertices.
- (iii) False. Any three non-parallel line segments can make up a triangle.
- (iv) False. The interior of a triangle is the region enclosed by the triangle and the vertices are not enclosed by the triangle.
- (v) True. The triangular region includes the interior region and the triangle itself.
- (vi) False. The vertices of a triangle are three non-collinear points.
- (vii) True. In an equilateral triangle, any two sides are equal.
- (viii) False. A right triangle can also be an isosceles triangle.
- (ix) False. Each acute triangle is not an equilateral triangle, but each equilateral triangle is an acute triangle.

(x) False. An isosceles triangle can be an obtuse triangle, a right triangle or an acute triangle

# Chapter 15: Properties of Triangles Exercise – 15.4

#### Question: 1

In each of the following, there are three positive numbers. State if these numbers could possibly be the lengths of the sides of a triangle:

(i) 5, 7, 9

(ii) 2, 10.15

(iii) 3, 4, 5

(iv) 2, 5, 7

(v) 5, 8, 20

#### Solution:

(i) Yes, these numbers can be the lengths of the sides of a triangle because the sum of any two sides of a triangle is always greater than the third side. Here, 5 + 7 > 9, 5 + 9 > 7, 9 + 7 > 5

(ii) No, these numbers cannot be the lengths of the sides of a triangle because the sum of any two sides of a triangle is always greater than the third side, which is not true in this case.

(iii) Yes, these numbers can be the lengths of the sides of a triangle because the sum of any two sides of triangle is always greater than the third side. Here, 3 + 4 > 5, 3 + 5 > 4, 4 + 5 > 3

(iv) No, these numbers cannot be the lengths of the sides of a triangle because the sum of any two sides of a triangle is always greater than the third side, which is not true in this case. Here, 2 + 5 = 7

(v) No, these numbers cannot be the lengths of the sides of a triangle because the sum of any two sides of a triangle is always greater than the third side, which is not true in this case. Here, 5 + 8 < 20

# Question: 2

In Fig, P is the point on the side BC. Complete each of the following statements using symbol '=',' > 'or '< 'so as to make it true:

(i) AP... AB+ BP

(ii) AP... AC + PC

(iii) AP.... 1/2(AB + AC + BC)



Solution:

(i) In triangle APB, AP < AB + BP because the sum of any two sides of a triangle is greater than the third side.

(ii) In triangle APC, AP < AC + PC because the sum of any two sides of a triangle is greater than the third side.

(iii) AP < 12(AB + AC + BC) In triangles ABP and ACP, we can see that:

AP < AB + BP...(i) (Because the sum of any two sides of a triangle is greater than the third side)

AP < AC + PC...(ii) (Because the sum of any two sides of a triangle is greater than the third side)

On adding (i) and (ii), we have:

AP + AP < AB + BP + AC + PC

2AP < AB + AC + BC (BC = BP + PC)

AP < (AB - FAC + BC)

#### **Question: 3**

P is a point in the interior of  $\triangle ABC$  as shown in Fig. State which of the following statements are true (T) or false (F):

(i) AP + PB < AB

(ii) AP + PC > AC

(iii) BP + PC = BC

# Solution:

(i) False

We know that the sum of any two sides of a triangle is greater than the third side: it is not true for the given triangle.

(ii) True

We know that the sum of any two sides of a triangle is greater than the third side: it is true for the given triangle.

(iii) False

We know that the sum of any two sides of a triangle is greater than the third side: it is not true for the given triangle.

#### **Question: 4**

O is a point in the exterior of  $\triangle$  ABC. What symbol '>','<' or '=' will you see to complete the statement OA+OB....AB? Write two other similar statements and show that

OA + OB + OC > 1/2(AB + BC + CA)

#### Solution:

Because the sum of any two sides of a triangle is always greater than the third side, in triangle OAB, we have:

OA + OB > AB - (i) OB + OC > BC - (ii) OA + OC > CA - (iii) On adding equations (i), (ii) and (iii) we get: OA + OB + OB + OC + OA + OC > AB + BC + CA 2(OA + OB + OC) > AB + BC + CAOA + OB + OC > (AB + BC + CA)/2

# Question: 5

In  $\triangle ABC$ ,  $\angle B = 30^{\circ}$ ,  $\angle C = 50^{\circ}$ . Name the smallest and the largest sides of the triangle.

# Solution:

Because the smallest side is always opposite to the smallest angle, which in this case is  $30^{\circ}$ , it is AC. Also, because the largest side is always opposite to the largest angle, which in this case is  $100^{\circ}$ , it is BC.

# Chapter 15: Properties of Triangles Exercise – 15.3

# **Question: 1**

 $_{\scriptscriptstyle \angle} \text{CBX}$  is an exterior angle of  ${\scriptstyle \bigtriangleup} \text{ABC}$  at B. Name

(i) the interior adjacent angle

(ii) the interior opposite angles to exterior  $\angle CBX$ 

Also, name the interior opposite angles to an exterior angle at A.



# Solution:

(i) ∠ABC

(ii)  $\angle$ BAC and  $\angle$ ACB

Also the interior angles opposite to exterior are  $\angle ABC$  and  $\angle ACB$ 

# **Question: 2**

In the fig, two of the angles are indicated. What are the measures of ∠ACX and ∠ACB?



# Solution:

In  $\triangle ABC$ ,  $\angle A = 50^{\circ}$  and  $\angle B = 55^{\circ}$ 

Because of the angle sum property of the triangle, we can say that

 $\angle A + \angle B + \angle C = 180^{\circ}$   $50^{\circ} + 55^{\circ} + \angle C = 180^{\circ}$ Or  $\angle C = 75^{\circ}$   $\angle ACB = 75^{\circ}$  $\angle ACX = 180^{\circ} - \angle ACB = 180^{\circ} - 75^{\circ} = 105^{\circ}$ 

#### **Question: 3**

In a triangle, an exterior angle at a vertex is 95° and its one of the interior opposite angles is 55°. Find all the angles of the triangle.



#### Solution:

We know that the sum of interior opposite angles is equal to the exterior angle.

Hence, for the given triangle, we can say that:

 $\angle ABC + \angle BAC = \angle BCO$   $55^{\circ} + \angle BAC = 95^{\circ}$ Or,  $\angle BAC = 95^{\circ} - 95^{\circ}$   $= \angle BAC = 40^{\circ}$ We also know that the sum of all angles of a triangle is 180°. Hence, for the given  $\triangle ABC$ , we can say that:  $\angle ABC + \angle BAC + \angle BCA = 180^{\circ}$   $55^{\circ} + 40^{\circ} + \angle BCA = 180^{\circ}$ Or,  $\angle BCA = 180^{\circ} - 95^{\circ}$ 

= ∠BCA = 85°

# **Question: 4**

One of the exterior angles of a triangle is 80°, and the interior opposite angles are equal to each other. What is the measure of each of these two angles?

#### Solution:

Let us assume that A and B are the two interior opposite angles.

We know that  $\angle A$  is equal to  $\angle B$ .

We also know that the sum of interior opposite angles is equal to the exterior angle.

Hence, we can say that:

∠A + ∠B = 80°

Or,

∠A +∠A = 80° (∠A= ∠B)

∠A = 40/2 =40°

∠A= ∠B = 40°

Thus, each of the required angles is of 40°.

# **Question: 5**

The exterior angles, obtained on producing the base of a triangle both ways are  $104^{\circ}$  and  $136^{\circ}$ . Find all the angles of the triangle.



#### Solution:

In the given figure, ∠ABE and ∠ABC form a linear pair.

∠ABE + ∠ABC =180°

∠ABC = 180°- 136°

∠ABC = 44°

We can also see that  $\angle ACD$  and  $\angle ACB$  form a linear pair.

 $\angle ACD + \angle ACB = 180^{\circ}$ 

∠AUB = 180°- 104°

∠ACB = 76°

We know that the sum of interior opposite angles is equal to the exterior angle.

Therefore, we can say that:

 $\angle BAC + \angle ABC = 104^{\circ}$ 

∠BAC = 104°- 44° = 60°

Thus,

 $\angle ACE = 76^{\circ} \text{ and } \angle BAC = 60^{\circ}$ 

## **Question: 6**

In Fig, the sides BC, CA and BA of a  $\triangle$ ABC have been produced to D, E and F respectively. If  $_{2}$ ACD = 105° and  $_{2}$ EAF = 45°; find all the angles of the  $\triangle$ ABC



# Solution:

In a  ${\bigtriangleup}ABC, \ {\scriptstyle \angle}BAC$  and  ${\scriptstyle \angle}EAF$  are vertically opposite angles.

Hence, we can say that:

 $\angle BAC = \angle EAF = 45^{\circ}$ 

Considering the exterior angle property, we can say that:

 $\angle BAC + \angle ABC = \angle ACD = 105^{\circ}$ 

∠ABC = 105°-45° = 60°

Because of the angle sum property of the triangle, we can say that:

 $\angle ABC + \angle ACS + \angle BAC = 180^{\circ}$ 

∠ACB = 75°

Therefore, the angles are 45°, 65° and 75°.

# **Question: 7**

In Figure, AC perpendicular to CE and C ∠A: ∠B: ∠C= 3: 2: 1. Find the value of ∠ECD.



#### Solution:

In the given triangle, the angles are in the ratio 3: 2: 1.

Let the angles of the triangle be 3x, 2x and x.

Because of the angle sum property of the triangle, we can say that:

```
3x + 2x + x = 180^{\circ}

6x = 180^{\circ}

Or,

x = 30^{\circ} \dots (i)

Also, \angle ACB + \angle ACE + \angle ECD = 180^{\circ}

x + 90^{\circ} + \angle ECD = 180^{\circ} (\angle ACE = 90^{\circ})

\angle ECD = 60^{\circ} [From (i)]
```

#### **Question: 8**

A student when asked to measure two exterior angles of  $\triangle ABC$  observed that the exterior angles at A and B are of 103° and 74° respectively. Is this possible? Why or why not?

#### Solution:

Here,

Internal angle at A + External angle at A = 180°

Internal angle at A + 103° =180°

Internal angle at A = 77°

Internal angle at B + External angle at B = 180°

Internal angle at B + 74° = 180°

Internal angle at  $B = 106^{\circ}$ 

Sum of internal angles at A and B = 77° + 106° =183°

It means that the sum of internal angles at A and B is greater than 180°, which cannot be possible.

# **Question: 9**

In Figure, AD and CF are respectively perpendiculars to sides BC and AB of  $\triangle$ ABC. If  $_{2}$ FCD = 50°, find  $_{2}$ BAD



#### Solution:

We know that the sum of all angles of a triangle is 180°

Therefore, for the given  $\triangle$ FCB, we can say that:

 $\angle$ FCB +  $\angle$ CBF +  $\angle$ BFC = 180° 50° +  $\angle$ CBF + 90° = 180° Or,  $\angle$ CBF = 180° - 50° - 90° = 40° ... (i) Using the above rule for  $\triangle$ ABD, we can say that:  $\angle$ ABD +  $\angle$ BDA +  $\angle$ BAD = 180°  $\angle$ BAD = 180° - 90° - 40° = 50° [from (i)]

#### **Question: 10**

In Figure, measures of some angles are indicated. Find the value of x.



# Solution:

```
Here,
```

```
∠AED + 120° = 180° (Linear pair)
```

∠AED = 180°- 120° = 60°

We know that the sum of all angles of a triangle is 180°.

Therefore, for  $\triangle ADE$ , we can say that:

 $\angle ADE + \angle AED + \angle DAE = 180^{\circ}$ 

60°+ ∠ADE + 30° =180°

Or,

∠ADE = 180°- 60°- 30° = 90°

From the given figure, we can also say that:

∠FDC + 90° = 180° (Linear pair)

∠FDC = 180°- 90° = 90°

Using the above rule for  $\triangle \text{CDF},$  we can say that:

 $\angle CDF + \angle DCF + \angle DFC = 180^{\circ}$ 

90° + ∠DCF + 60° =180°

∠DCF = 180°-60°- 90°= 30°

Also,

 $\angle DCF + x = 180^{\circ}$  (Linear pair)

 $30^{\circ} + x = 180^{\circ}$ 

Or,

 $x = 180^{\circ} - 30^{\circ} = 150^{\circ}$ 

#### Question: 11

In Figure, ABC is a right triangle right angled at A. D lies on BA produced and DE perpendicular to BC intersecting AC at F. If  $\angle AFE = 130^{\circ}$ , find

(i) ∠BDE



# Solution:

(i) Here,

 $\angle BAF + \angle FAD = 180^{\circ}$  (Linear pair)

```
∠FAD = 180°- ∠BAF = 180°- 90° = 90°
```

Also,

 $\angle AFE = \angle ADF + \angle FAD$  (Exterior angle property)

∠ADF + 90° = 130°

∠ADF = 130°- 90° = 40°

(ii) We know that the sum of all the angles of a triangle is 180°.

Therefore, for  $\triangle BDE$ , we can say that:

 $\angle BDE + \angle BED + \angle DBE = 180^{\circ}$ .

∠DBE = 180°- ∠BDE ∠BED = 180°- 90°- 40°= 50° - (i)

Also,

 $\angle$ FAD =  $\angle$ ABC +  $\angle$ ACB (Exterior angle property)

90° = 50° + ∠ACB

Or,

∠ACB = 90°- 50° = 40°

(iii)  $\angle ABC = \angle DBE = 50^{\circ} [From (i)]$ 

# Question: 12

ABC is a triangle in which  $_{\angle}B = _{\angle}C$  and ray AX bisects the exterior angle DAC. If  $_{\angle}DAX = 70^{\circ}$ . Find  $_{\angle}ACB$ .



Solution:

Here,

 $\angle$ CAX =  $\angle$ DAX (AX bisects  $\angle$ CAD)

∠CAX =70°

 $_{\angle}CAX +_{\angle}DAX + _{\angle}CAB = 180^{\circ}$ 

70°+ 70° + ∠CAB =180°

∠CAB =180° –140°

∠CAB =40°

 $\angle ACB + \angle CBA + \angle CAB = 180^{\circ}$  (Sum of the angles of  $\triangle ABC$ )

∠ACB + ∠ACB+ 40° = 180° (∠C = ∠B) 2∠ACB = 180°- 40° ∠ACB = 140/2 ∠ACB = 70°

#### **Question: 13**

The side BC of  $\triangle$ ABC is produced to a point D. The bisector of  $\angle$ A meets side BC in L. If  $\angle$ ABC= 30° and  $\angle$ ACD = 115°, find  $\angle$ ALC



#### Solution:

 $\angle$ ACD and  $\angle$ ACL make a linear pair.

 $\angle ACD + \angle ACB = 180^{\circ}$ 

115° + ∠ACB =180°

∠ACB = 180°- 115°

We know that the sum of all angles of a triangle is 180°.

Therefore, for  $\triangle ABC$ , we can say that:

 $\angle ABC + \angle BAC + \angle ACB = 180^{\circ}$ 

30° + ∠BAC + 65° = 180°

Or,

∠BAC = 85°

∠LAC = ∠BAC/2 = 85/2

Using the above rule for  ${\scriptstyle \Delta}\text{ALC},$  we can say that:

 $\angle$ ALC +  $\angle$ LAC +  $\angle$ ACL = 180°

$$\angle ALC + \frac{82^{\circ}}{2} + 65^{\circ} = 180^{\circ} (\angle ACL = \angle ACB)$$

Or,

$$\angle ALC$$
= 180° -  $\frac{85^{\circ}}{2}$  - 65°  
 $\angle ALC$ =  $\frac{145^{\circ}}{2}$ = 72 $\frac{1}{2}^{\circ}$ 

# **Question: 14**

D is a point on the side BC of  $\triangle$ ABC. A line PDQ through D, meets side AC in P and AB produced at Q. If  $_{\angle}A = 80^{\circ}$ ,  $_{\angle}ABC = 60^{\circ}$  and  $_{\angle}PDC = 15^{\circ}$ , find (i)  $_{\angle}AQD$ 

(ii) ∠APD



# Solution:

∠ABD and ∠QBD form a linear pair. ∠ABC + ∠QBC =180° 60° + ∠QBC = 180° ∠QBC = 120°  $\angle$ PDC =  $\angle$ BDQ (Vertically opposite angles) ∠BDQ = 75° In ∆QBD:  $\angle$ QBD +  $\angle$ QDB +  $\angle$ BDQ = 180° (Sum of angles of  $\triangle$ QBD) 120°+ 15° + ∠BQD = 180° ∠BQD = 180°- 135° ∠BQD = 45°  $\angle AQD = \angle BQD = 45^{\circ}$ In ∆AQP:  $\angle$ QAP +  $\angle$ AQP +  $\angle$ APQ = 180° (Sum of angles of  $\triangle$ AQP) 80° + 45° + ∠APQ = 180° ∠APQ = 55° ∠APD = ∠APQ

# Question: 15

Explain the concept of interior and exterior angles and in each of the figures given below. Find x and y



#### Solution:

The interior angles of a triangle are the three angle elements inside the triangle.

The exterior angles are formed by extending the sides of a triangle, and if the side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

Using these definitions, we will obtain the values of x and y.

(I) From the given figure, we can see that:

```
∠ACB + x = 180° (Linear pair)
75^{\circ} + x = 180^{\circ}
Or,
x = 105°
We know that the sum of all angles of a triangle is 180°.
Therefore, for \triangle ABC, we can say that:
∠BAC+ ∠ABC +∠ACB = 180°
40^{\circ} + y + 75^{\circ} = 180^{\circ}
Or,
y = 65°
(ii) x + 80°= 180° (Linear pair)
= x = 100°
In ∆ABC:
x+y+30^{\circ} = 180^{\circ} (Angle sum property)
100^{\circ} + 30^{\circ} + y = 180^{\circ}
= y = 50°
(iii) We know that the sum of all angles of a triangle is 180°.
Therefore, for \triangle ACD, we can say that:
30^{\circ} + 100^{\circ} + y = 180^{\circ}
Or,
```

**.**,

```
y = 50°
```

∠ACB + 100° = 180°

 $\angle ACB = 80^{\circ} \dots (i)$ Using the above rule for  $\triangle ACD$ , we can say that:  $x + 45^{\circ} + 80^{\circ} = 180^{\circ}$  $= x = 55^{\circ}$ (iv) We know that the sum of all angles of a triangle is 180°. Therefore, for  $\triangle DBC$ , we can say that:  $30^{\circ} + 50^{\circ} + \angle DBC = 180^{\circ}$  $\angle DBC = 100^{\circ}$  $x + \angle DBC = 180^{\circ}$  (Linear pair)  $x = 80^{\circ}$ And,

 $y = 30^{\circ} + 80^{\circ} = 110^{\circ}$  (Exterior angle property)

#### **Question: 16**

Compute the value of x in each of the following figures





# Solution:

(i) From the given figure, we can say that:

∠ACD + ∠ACB = 180° (Linear pair)

Or,

∠ACB = 180°- 112° = 68°

We can also say that:

∠BAE + ∠BAC = 180° (Linear pair)

Or,

∠BAC = 180°- 120° = 60°

We know that the sum of all angles of a triangle is 180°.

Therefore, for ∆ABC:

 $x + \angle BAC + \angle ACB = 180^{\circ}$ 

 $x = 180^{\circ} - 60^{\circ} - 68^{\circ} = 52^{\circ}$ 

(ii) From the given figure, we can say that:

∠ABC + 120° = 180° (Linear pair)

```
∠ABC = 60°
```

```
We can also say that:
```

```
∠ACB+ 110° = 180° (Linear pair)
```

∠ACB = 70°

We know that the sum of all angles of a triangle is 180°.

Therefore, for  $\triangle ABC$ :

x + ∠ABC + ∠ACB = 180°

x = 50°

(iii) From the given figure, we can see that:

 $\angle$ BAD =  $\angle$ ADC = 52° (Alternate angles)

We know that the sum of all the angles of a triangle is 180°.

Therefore, for  $\triangle DEC$ :

 $x + 40^{\circ} + 52^{\circ} = 180^{\circ}$ 

= x = 88°

(iv) In the given figure, we have a quadrilateral whose sum of all angles is 360°.

Thus,

```
35^{\circ} + 45^{\circ} + 50^{\circ} + \text{reflex} \angle \text{ADC} = 360^{\circ}
```

Or,

reflex ∠ADC = 230°

```
230^{\circ} + x = 360^{\circ} (A complete angle)
```

```
= x = 130°
```

# Chapter 15: Properties of Triangles Exercise – 15.2

# **Question: 1**

Two angles of a triangle are of measures 150° and 30°. Find the measure of the third angle.

#### Solution:

Let the third angle be x Sum of all the angles of a triangle =  $180^{\circ}$   $105^{\circ} + 30^{\circ} + x = 180^{\circ}$   $135^{\circ} + x = 180^{\circ}$   $x = 180^{\circ} - 135^{\circ}$   $x = 45^{\circ}$ Therefore the third angle is  $45^{\circ}$ 

# **Question: 2**

One of the angles of a triangle is 130°, and the other two angles are equal. What is the measure of each of these equal angles?

#### Solution:

Let the second and third angle be x

Sum of all the angles of a triangle = 180°

 $130^{\circ} + x + x = 180^{\circ}$  $130^{\circ} + 2x = 180^{\circ}$  $2x = 180^{\circ} - 130^{\circ}$ 

2x = 50°

x = 50/2

x = 25°

Therefore the two other angles are 25° each

#### **Question: 3**

The three angles of a triangle are equal to one another. What is the measure of each of the angles?

# Solution:

Let the each angle be x

Sum of all the angles of a triangle =180°

 $x + x + x = 180^{\circ}$ 

3x = 180°

x = 180/3

 $x = 60^{\circ}$ 

Therefore angle is 60° each

## **Question: 4**

If the angles of a triangle are in the ratio 1: 2: 3, determine three angles.

#### Solution:

If angles of the triangle are in the ratio 1: 2: 3 then take first angle as 'x', second angle as '2x' and third angle as '3x'

Sum of all the angles of a triangle=180°

 $x + 2x + 3x = 180^{\circ}$   $6x = 180^{\circ}$  x = 180/6  $x = 30^{\circ}$   $2x = 30^{\circ} \times 2 = 60^{\circ}$  $3x = 30^{\circ} \times 3 = 90^{\circ}$ 

Therefore the first angle is 30°, second angle is 60° and third angle is 90°

# **Question: 5**

The angles of a triangle are (x – 40) °, (x – 20) ° and (1/2 – 10) °. Find the value of x.

# Solution:

Sum of all the angles of a triangle= $180^{\circ}$ 

$$(x - 40)^{\circ} + (x - 20)^{\circ} + (\frac{x}{2} - 10)^{\circ} = 180^{\circ}$$
  
 $x + x + \frac{x}{2} - 40^{\circ} - 20^{\circ} - 10^{\circ} = 180^{\circ}$   
 $x + x + \frac{x}{2} - 70^{\circ} = 180^{\circ}$   
 $x + x + \frac{x}{2} = 180^{\circ} + 70^{\circ}$   
 $\frac{5x}{2} = 250^{\circ}$   
 $x = \frac{2}{5} \times 250^{\circ}$   
 $x = 100^{\circ}$ 

Hence we can conclude that x is equal to  $100^\circ$ 

# **Question: 6**

The angles of a triangle are arranged in ascending order of magnitude. If the difference between two consecutive angles is 10°. Find the three angles.

#### Solution:

Let the first angle be x Second angle be  $x + 10^{\circ}$ Third angle be  $x + 10^{\circ} + 10^{\circ}$ Sum of all the angles of a triangle =  $180^{\circ}$  $x + x + 10^{\circ} + x + 10^{\circ} + 10^{\circ} = 180^{\circ}$ 3x + 30 = 1803x + 30 = 1803x = 180 - 303x = 150x = 150/3 $x = 50^{\circ}$ First angle is  $50^{\circ}$ Second angle  $x + 10^{\circ} = 50 + 10 = 60^{\circ}$ Third angle  $x + 10^{\circ} + 10^{\circ} = 50 + 10 + 10 = 70^{\circ}$ 

# **Question: 7**

Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle

# Solution:

Let the first and second angle be x

The third angle is greater than the first and second by  $30^{\circ} = x + 30^{\circ}$ 

The first and the second angles are equal

Sum of all the angles of a triangle = 180°

 $x + x + x + 30^{\circ} = 180^{\circ}$ 

3x + 30 = 180

3x = 180 - 30

3x = 150

x = 150/3

x = 50°

Third angle =  $x + 30^{\circ} = 50^{\circ} + 30^{\circ} = 80^{\circ}$ 

The first and the second angle is 50° and the third angle is 80°

# **Question: 8**

If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right triangle.

# Solution:

One angle of a triangle is equal to the sum of the other two

x = y + z

Let the measure of angles be x, y, z

 $x + y + z = 180^{\circ}$ 

x + x = 180°

2x = 180°

x = 180/2

x = 90°

If one angle is 90° then the given triangle is a right angled triangle

# **Question: 9**

If each angle of a triangle is less than the sum of the other two, show that the triangle is acute angled.

#### Solution:

Each angle of a triangle is less than the sum of the other two

Measure of angles be x, y and z

x > y + z

y < x + z

z < x + y

Therefore triangle is an acute triangle

# **Question: 10**

In each of the following, the measures of three angles are given. State in which cases the angles can possibly be those of a triangle:

(i) 63°, 37°, 80°
(ii) 45°, 61°, 73°
(iii) 59°, 72°, 61°

(iv) 45°, 45°, 90° (v) 30°, 20°, 125°

#### Solution:

(i)  $63^{\circ}$ ,  $37^{\circ}$ ,  $80^{\circ} = 180^{\circ}$ Angles form a triangle (ii)  $45^{\circ}$ ,  $61^{\circ}$ ,  $73^{\circ}$  is not equal to  $180^{\circ}$ Therefore not a triangle (iii)  $59^{\circ}$ ,  $72^{\circ}$ ,  $61^{\circ}$  is not equal to  $180^{\circ}$ Therefore not a triangle (iv)  $45^{\circ}$ ,  $45^{\circ}$ ,  $90^{\circ} = 180^{\circ}$ Angles form a triangle (v)  $30^{\circ}$ ,  $20^{\circ}$ ,  $125^{\circ}$  is not equal to  $180^{\circ}$ Therefore not a triangle

#### **Question: 11**

The angles of a triangle are in the ratio 3: 4: 5. Find the smallest angle

#### Solution:

Given that Angles of a triangle are in the ratio: 3: 4: 5 Measure of the angles be 3x, 4x, 5xSum of the angles of a triangle =180° 3x + 4x + 5x = 180°12x = 180°x = 180/12x = 15°Smallest angle = 3x= $3 \times 15°$ 

= 45°

# Question: 12

Two acute angles of a right triangle are equal. Find the two angles.

#### Solution:

Given acute angles of a right angled triangle are equal

Right triangle: whose one of the angle is a right angle

Measured angle be x, x, 90°

x + x + 180°= 180°

2x = 90°

x = 90/2

x = 45°

The two angles are 45° and 45°

# **Question: 13**

One angle of a triangle is greater than the sum of the other two. What can you say about the measure of this angle? What type of a triangle is this?

#### Solution:

Angle of a triangle is greater than the sum of the other two

Measure of the angles be x, y, z x > y + z or y > x + z or z > x + yx or y or  $z > 90^{\circ}$  which is obtuse Therefore triangle is an obtuse angle

#### **Question: 14**

AC, AD and AE are joined. Find

∠FAB + ∠ABC + ∠BCD + ∠CDE + ∠DEF + ∠EFA

∠FAB + ∠ABC + ∠BCD + ∠CDE + ∠DEF + ∠EFA

#### Solution:

We know that sum of the angles of a triangle is 180°

Therefore in  $\triangle ABC$ , we have



Therefore ∠FAB + ∠ABC + ∠BCD + ∠CDE + ∠DEF + ∠EFA = 720°

#### **Question: 15**

Find x, y, z (whichever is required) from the figures given below:



#### Solution:

(i) In  $\triangle ABC$  and  $\triangle ADE$  we have:

∠ADE = ∠ABC (corresponding angles)

```
x = 40^{\circ}
\angle AED = \angle ACB (corresponding angles)
y = 30^{\circ}
We know that the sum of all the three angles of a triangle is equal to 180°
x + y + z = 180^{\circ} (Angles of \triangle ADE)
Which means: 40^{\circ} + 30^{\circ} + z = 180^{\circ}
z = 180° - 70°
z = 110°
Therefore, we can conclude that the three angles of the given triangle are 40°, 30° and 110°.
(ii) We can see that in \triangle ADC, \angle ADC is equal to 90°.
(\Delta ADC \text{ is a right triangle})
We also know that the sum of all the angles of a triangle is equal to 180°.
Which means: 45^{\circ} + 90^{\circ} + y = 180^{\circ} (Sum of the angles of \triangle ADC)
135^{\circ} + y = 180^{\circ}
y = 180^{\circ} - 135^{\circ}.
y = 45°.
We can also say that in \triangle ABC, \angle ABC + \angle ACB + \angle BAC is equal to 180°.
(Sum of the angles of \triangle ABC)
40^{\circ} + y + (x + 45^{\circ}) = 180^{\circ}
40^{\circ} + 45^{\circ} + x + 45^{\circ} = 180^{\circ} (y = 45°)
x = 180^{\circ} - 130^{\circ}
x = 50^{\circ}
Therefore, we can say that the required angles are 45° and 50°.
(iii) We know that the sum of all the angles of a triangle is equal to 180°.
Therefore, for \triangle ABD:
\angle ABD + \angle ADB + \angle BAD = 180^{\circ} (Sum of the angles of \triangle ABD)
50^{\circ} + x + 50^{\circ} = 180^{\circ}
100^{\circ} + x = 180^{\circ}
x = 180^{\circ} - 100^{\circ}
x = 80°
For ∆ABC:
\angle ABC + \angle ACB + \angle BAC = 180^{\circ} (Sum of the angles of \triangle ABC)
50^{\circ} + z + (50^{\circ} + 30^{\circ}) = 180^{\circ}
50^{\circ} + z + 50^{\circ} + 30^{\circ} = 180^{\circ}
z = 180^{\circ} - 130^{\circ}
z = 50°
Using the same argument for \triangle ADC:
\angle ADC + \angle ACD + \angle DAC = 180^{\circ} (Sum of the angles of \triangle ADC)
y +z + 30° =180°
y + 50^{\circ} + 30^{\circ} = 180^{\circ} (z = 50^{\circ})
y = 180^{\circ} - 80^{\circ}
y = 100°
Therefore, we can conclude that the required angles are 80°, 50° and 100°.
(iv) In \triangle ABC and \triangle ADE we have:
```

∠ADE = ∠ABC (Corresponding angles)

y = 50°

```
Also, \angle AED = \angle ACB (Corresponding angles)
```

z = 40°

We know that the sum of all the three angles of a triangle is equal to 180°.

Which means:  $x + 50^{\circ} + 40^{\circ} = 180^{\circ}$  (Angles of  $\triangle ADE$ )

 $x = 180^{\circ} - 90^{\circ}$ 

x = 90°

Therefore, we can conclude that the required angles are  $50^{\circ}$ ,  $40^{\circ}$  and  $90^{\circ}$ .

#### Question: 16

If one angle of a triangle is 60° and the other two angles are in the ratio 1: 2, find the angles

#### Solution:

We know that one of the angles of the given triangle is 60°. (Given)

We also know that the other two angles of the triangle are in the ratio 1: 2.

Let one of the other two angles be x.

Therefore, the second one will be 2x.

We know that the sum of all the three angles of a triangle is equal to 180°.

 $60^{\circ} + x + 2x = 180^{\circ}$   $3x = 180^{\circ} - 60^{\circ}$   $3x = 120^{\circ}$  x = 120/3  $x = 40^{\circ}$   $2x = 2 \times 40$   $2x = 80^{\circ}$ Hence, we can conclude that the required angles are  $40^{\circ}$  and  $80^{\circ}$ .

# Question: 17

It one angle of a triangle is 100° and the other two angles are in the ratio 2: 3. find the angles.

#### Solution:

We know that one of the angles of the given triangle is 100°.

We also know that the other two angles are in the ratio 2: 3.

Let one of the other two angles be 2x.

Therefore, the second angle will be 3x.

We know that the sum of all three angles of a triangle is 180°.

 $100^{\circ} + 2x + 3x = 180^{\circ}$   $5x = 180^{\circ} - 100^{\circ}$   $5x = 80^{\circ}$  x = 80/5  $2x = 2 \times 16$   $2x = 32^{\circ}$   $3x = 3 \times 16$  $3x = 48^{\circ}$ 

Thus, the required angles are  $32^\circ$  and  $48^\circ.$ 

#### **Question: 18**

In  $\triangle ABC$ , if  $3 \angle A = 4 \angle B = 6 \angle C$ , calculate the angles.

#### Solution:

We know that for the given triangle,  $3 \angle A = 6 \angle C$ 

∠A = 2∠C — (i)

We also know that for the same triangle,  $4 \ge B = 6 \ge C$ 

 $_{\angle}B = (6/4)_{\angle}C - (ii)$ 

We know that the sum of all three angles of a triangle is 180°.

Therefore, we can say that:

 $\angle A + \angle B + \angle C = 180^{\circ}$  (Angles of  $\triangle ABC$ ) — (iii)

On putting the values of  ${\scriptstyle \angle}A$  and  ${\scriptstyle \angle}B$  in equation (iii), we get:

 $2_{\angle}C + (6/4)_{\angle}C +_{\angle}C = 180^{\circ}$ 

(18/4) ∠C = 180°

∠C = 40°

From equation (i), we have:

 $\angle A = 2 \angle C = 2 \times 40$ 

∠A = 80°

From equation (ii), we have:

 $_{\angle}B = (6/4)_{\angle}C = (6/4) \times 40^{\circ}$ 

∠B = 60°

 $\angle A = 80^\circ, \angle B = 60^\circ, \angle C = 40^\circ$ 

Therefore, the three angles of the given triangle are 80°, 60°, and 40°.

#### **Question: 19**

Is it possible to have a triangle, in which

(i) Two of the angles are right?

(ii) Two of the angles are obtuse?

(iii) Two of the angles are acute?

(iv) Each angle is less than 60°?

(v) Each angle is greater than 60°?

(vi) Each angle is equal to 60°

#### Solution:

Give reasons in support of your answer in each case.

(i) No, because if there are two right angles in a triangle, then the third angle of the triangle must be zero, which is not possible.

(ii) No, because as we know that the sum of all three angles of a triangle is always 180°. If there are two obtuse angles, then their sum will be more than 180°, which is not possible in case of a triangle.

(iii) Yes, in right triangles and acute triangles, it is possible to have two acute angles.

(iv) No, because if each angle is less than  $60^{\circ}$ , then the sum of all three angles will be less than  $180^{\circ}$ , which is not possible in case of a triangle.

Proof:

Let the three angles of the triangle be  $\angle A$ ,  $\angle B$  and  $\angle C$ .

As per the given information,

∠A < 60° ... (i)

∠B< 60° ... (ii)

∠C < 60° ... (iii)

On adding (i), (ii) and (iii), we get:

 $_{\angle}A + _{\angle}B + _{\angle}C < 60^{\circ} + 60^{\circ} + 60^{\circ}$ 

 $_{\angle}A + _{\angle}B + _{\angle}C < 180^{\circ}$ 

We can see that the sum of all three angles is less than  $180^{\circ}$ , which is not possible for a triangle.

Hence, we can say that it is not possible for each angle of a triangle to be less than 60°.

(v) No, because if each angle is greater than  $60^{\circ}$ , then the sum of all three angles will be greater than  $180^{\circ}$ , which is not possible.

Proof:

Let the three angles of the triangle be  $\angle A$ ,  $\angle B$  and  $\angle C$ . As per the given information,

∠A > 60° ... (i)

∠B > 60° ... (ii)

∠C > 60° ... (iii)

On adding (i), (ii) and (iii), we get:

 $\angle A + \angle B + \angle C > 60^{\circ} + 60^{\circ} + 60^{\circ}$ 

 $\angle A + \angle B + \angle C > 180^{\circ}$ 

We can see that the sum of all three angles of the given triangle are greater than 180°, which is not possible for a triangle.

Hence, we can say that it is not possible for each angle of a triangle to be greater than 60°.

(vi) Yes, if each angle of the triangle is equal to  $60^{\circ}$ , then the sum of all three angles will be  $180^{\circ}$ , which is possible in case of a triangle.

Proof:

Let the three angles of the triangle be  $\angle A$ ,  $\angle B$  and  $\angle C$ . As per the given information,

∠A = 60° ... (i)

∠B = 60° ...(ii)

∠C = 60° ... (iii)

On adding (i), (ii) and (iii), we get:

 $\angle A + \angle B + \angle C = 60^{\circ} + 60^{\circ} + 60^{\circ}$ 

∠A + ∠B + ∠C =180°

We can see that the sum of all three angles of the given triangle is equal to 180°, which is possible in case of a triangle. Hence, we can say that it is possible for each angle of a triangle to be equal to 60°.

#### Question: 20

In  $\triangle ABC$ ,  $\angle A = 100^{\circ}$ , AD bisects  $\angle A$  and AD perpendicular BC. Find  $\angle B$ 



#### Solution:

Consider  $\triangle ABD$   $\angle BAD = 100/2$  (AD bisects  $\angle A$ )  $\angle BAD = 50^{\circ}$ 

```
\angle ADB = 90^{\circ} (AD perpendicular to BC)
```

We know that the sum of all three angles of a triangle is 180°.

Thus,

```
\angle ABD + \angle BAD + \angle ADB = 180^{\circ} (Sum of angles of \triangle ABD)
```

Or,

∠ABD + 50° + 90° = 180°

∠ABD =180° – 140°

∠ABD = 40°

#### **Question: 21**

In  $\triangle ABC$ ,  $\angle A = 50^{\circ}$ ,  $\angle B = 100^{\circ}$  and bisector of  $\angle C$  meets AB in D. Find the angles of the triangles ADC and BDC



#### Solution:

We know that the sum of all three angles of a triangle is equal to 180°.

Therefore, for the given  $\triangle ABC$ , we can say that:  $_{2}A + _{2}B + _{2}C = 180^{\circ}$  (Sum of angles of  $\triangle ABC$ )

50° + 70° + ∠C = 180° ∠C= 180° –120° ∠C = 60°  $\angle ACD = \angle BCD = \angle C2$  (CD bisects  $\angle C$  and meets AB in D.) ∠ACD = ∠BCD = 60/2= 30° Using the same logic for the given  $\triangle ACD$ , we can say that: ∠DAC + ∠ACD + ∠ADC = 180° 50° + 30° + ∠ADC = 180° ∠ADC = 180°- 80° ∠ADC = 100° If we use the same logic for the given  $\triangle BCD$ , we can say that  $\angle DBC + \angle BCD + \angle BDC = 180^{\circ}$ 70° + 30° + ∠BDC = 180° ∠BDC = 180° - 100° ∠BDC = 80° Thus, For  $\triangle ADC$ :  $\angle A = 50^\circ$ ,  $\angle D = 100^\circ \angle C = 30^\circ$  $\triangle$ BDC:  $\angle$ B = 70°,  $\angle$ D = 80°  $\angle$ C = 30°

# **Question: 22**

In  $\triangle ABC$ ,  $\angle A = 60^{\circ}$ ,  $\angle B = 80^{\circ}$ , and the bisectors of  $\angle B$  and  $\angle C$ , meet at O. Find

(i) ∠C

(ii) ∠BOC



# Solution:

We know that the sum of all three angles of a triangle is 180°.

Hence, for  $\triangle ABC$ , we can say that:

 $\angle A + \angle B + \angle C = 180^{\circ}$  (Sum of angles of  $\triangle ABC$ )

60° + 80° + ∠C= 180°.

∠C = 180° – 140°

∠C = 140°.

For  $\triangle OBC$ ,

```
\angle OBC = \angle B2 = 80/2 (OB bisects \angle B)
```

```
∠OBC = 40°
```

```
\angle OCB = \angle C2 = 40/2 (OC bisects \angle C)
```

```
∠OCB = 20°
```

If we apply the above logic to this triangle, we can say that:

 $\angle OCB + \angle OBC + \angle BOC = 180^{\circ}$  (Sum of angles of  $\triangle OBC$ )

20° + 40° + ∠BOC = 180°

∠BOC = 180° - 60°

∠BOC = 120°

# **Question: 23**

The bisectors of the acute angles of a right triangle meet at O. Find the angle at O between the two bisectors.





We know that the sum of all three angles of a triangle is 180°.

Hence, for  $\triangle ABC$ , we can say that:

 $\angle A + \angle B + \angle C = 180^{\circ}$  $_{\angle}A + 90^{\circ} + _{\angle}C = 180^{\circ}$ ∠A + ∠C = 180° – 90° ∠A + ∠C = 90° For ∆OAC:  $\angle OAC = \angle A2$ (OA bisects LA) ∠OCA =∠C2 (OC bisects LC) On applying the above logic to riangle OAC, we get:  $\angle AOC + \angle OAC + \angle OCA = 180^{\circ}$  (Sum of angles of  $\triangle AOC$ ) ∠AOC + ∠A2 + ∠C2 = 180°  $\angle AOC + \angle A + \angle C2 = 180^{\circ}$ ∠AOC + 90/2 = 180° ∠AOC = 180° – 45° ∠AOC = 135°

# **Question: 24**

In  $\triangle$ ABC,  $\angle$ A = 50° and BC is produced to a point D. The bisectors of  $\angle$ ABC and  $\angle$ ACD meet at E. Find  $\angle$ E.



# Solution:

In the given triangle,

 $\angle ACD = \angle A + \angle B$ . (Exterior angle is equal to the sum of two opposite interior angles.)

We know that the sum of all three angles of a triangle is 180°.

Therefore, for the given triangle, we can say that:

 $\angle ABC + \angle BCA + \angle CAB = 180^{\circ} \text{ (Sum of all angles of } \triangle ABC \text{ )}$   $\angle A + \angle B + \angle BCA = 180^{\circ}$   $\angle BCA = 180^{\circ} \cdot (\angle A + \angle B \text{ )}$   $\angle ECA = \frac{\angle ACD}{2} \quad (\text{EC bisects } \angle ACD \text{ )}$   $\angle ECA = \frac{\angle A + \angle B}{2} \quad (\angle ACD = \angle A + \angle B \text{ )}$   $\angle EBC = \frac{\angle ABC}{2} = \frac{\angle B}{2} (EBbisects \angle ABC)$   $\angle ECB = \angle ECA + \angle BCA$   $\angle ECB = \frac{\angle A + \angle B}{2} + 180^{\circ} - (\angle A + \angle B)$ If we use the same logic for  $\triangle EBC$ , we can say that :  $\angle EBC + \angle ECB + \angle BEC = 180^{\circ} \text{ (Sum of all angles of } \triangle EBC \text{ )}$   $\angle BEC = \angle A + \angle B - (\frac{\angle A + \angle B}{2} - \frac{\angle B}{2}$   $\angle BEC = \angle A + \angle B - (\frac{\angle A + \angle B}{2} - \frac{\angle B}{2}$ 

 $\angle BEC = \frac{50^{\circ}}{2} = 25^{\circ}$ 

## **Question: 25**

In  $\triangle ABC$ ,  $\angle B = 60^{\circ}$ ,  $\angle C = 40^{\circ}$ , AL perpendicular BC and AD bisects  $\angle A$  such that L and D lie on side BC. Find  $\angle LAD$ 



#### Solution:

We know that the sum of all angles of a triangle is 180°

Therefore, for  $\triangle ABC$ , we can say that:

 $\angle A + \angle B + \angle C = 180^{\circ}$ or,  $\angle A + 60^{\circ} + 40^{\circ} = 180^{\circ}$   $\angle A = 80^{\circ}$   $\angle DAC = \frac{\angle A}{2} \quad (AD \text{ bisects } \angle A)$   $\angle DAC = \frac{80^{\circ}}{2}$ If we use the above logic on  $\triangle ADC$ , we can say that :  $\angle ADC + \angle DCA + \angle DAC = 180^{\circ} \text{ (Sum of all the angles of } \triangle ADC)$   $\angle ADC + 40^{\circ} + 40^{\circ} = 180^{\circ}$   $\angle ADC = 180^{\circ} + 80^{\circ}$   $\angle ADC = 180^{\circ} + 80^{\circ}$   $\angle ADC = 2 \angle ALD + \angle LAD \text{ (Exterior angle is equal to the sum of two Interior opposite angles.)}$   $100^{\circ} = 90^{\circ} + \angle LAD \quad (AL \text{ perpendicular toBC})$   $\angle LAD = 90^{\circ}$ 

# Question: 26

Line segments AB and CD intersect at O such that AC perpendicular DB. It  $_{2}CAB = 35^{\circ}$  and  $_{2}CDB = 55^{\circ}$ . Find  $_{2}BOD$ .



# Solution:

We know that AC parallel to BD and AB cuts AC and BD at A and B, respectively.

```
∠CAB = ∠DBA (Alternate interior angles)
```

```
∠DBA = 35°
```

We also know that the sum of all three angles of a triangle is 180°.

Hence, for  $\triangle OBD$ , we can say that:

∠DBO + ∠ODB + ∠BOD = 180°

 $35^{\circ} + 55^{\circ} + \angle BOD = 180^{\circ} (\angle DBO = \angle DBA \text{ and } \angle ODB = \angle CDB)$ 

∠BOD = 180° - 90°

∠BOD = 90°

# Question: 27

In Figure,  $\triangle ABC$  is right angled at A, Q and R are points on line BC and P is a point such that QP perpendicular to AC and RP perpendicular to AB. Find  $_{2}P$ 



# Solution:

In the given triangle, AC parallel to QP and BR cuts AC and QP at C and Q, respectively.

 $\angle$ QCA =  $\angle$ CQP (Alternate interior angles)

Because RP parallel to AB and BR cuts AB and RP at B and R, respectively,

 $\angle ABC = \angle PRQ$  (alternate interior angles).

We know that the sum of all three angles of a triangle is 180°.

Hence, for  $\triangle ABC$ , we can say that:

 $\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$ 

 $\angle ABC + \angle ACB + 90^{\circ} = 180^{\circ}$  (Right angled at A)

 $\angle ABC + \angle ACB = 90^{\circ}$ 

Using the same logic for  $\triangle PQR$ , we can say that:

 $\angle$ PQR +  $\angle$ PRQ +  $\angle$ QPR = 180°

 $\angle ABC + \angle ACB + \angle QPR = 180^{\circ} (\angle ABC = \angle PRQ \text{ and } \angle QCA = \angle CQP)$ 

Or,

90°+ ∠QPR =180° (∠ABC+ ∠ACB = 90°)

∠QPR = 90°