Question: 1

Identify the monomials, binomials, trinomials and quadrinomials from the following expressions:

(i) a^{2} (ii) $a^{2} - b^{2}$ (iii) $x^{3} + y^{3} + z^{3}$ (iv) $x^{3} + y^{3} + z^{3} + 3xyz$ (v) 7 + 5 (vi) abc + 1 (vii) 3x - 2 + 5 (viii) 2x - 3y + 4 (ix) xy + yz + zx (x) $ax^{3} + bx^{2} + cx + d$

Solution:

The monomials, binomials, trinomials and quadrinomials are as follows.

(i) a^{2} is a monomial expression as it contains one term only. (ii) $a^{2} - b^{2}$ is a binomial expression as it contains two terms. (iii) $x^{3} + y^{3} + z^{3}$ is a trinomial expression as it contains three terms. (iv) $x^{3} + y^{3} + z^{3} + 3xyz$ is a quadrinomial expression as it contains four terms. (v) 7 + 5 = 12 is a monomial expression as it contains one term only. (vi) abc + 1 is a binomial expression as it contains two terms. (vii) 3x - 2 + 5 = 3x + 3 is a binomial expression as it contains two terms. (viii) 2x - 3y + 4 is a trinomial expression as it contains three terms. (ix) xy + yz + zx is a trinomial expression as it contains three terms. (ix) xy + yz + zx is a trinomial expression as it contains three terms. (x) $ax^{3} + bx^{2} + cx + d$ is a quadrinomial expression as it contains four terms.

Question: 2

Write all the terms of each of the following algebraic expressions:

(i) 3x

(ii) 2x - 3(iii) $2x^2 - 7$ (iv) $2x^2 + y^2 - 3xy + 4$

Solution:

The terms of each of the given algebraic expressions are as follows.

(i) 3x is the only term of the given algebraic expression.

(ii) 2x and -3 are the terms of the given algebraic expression.

(iii) $2x^2$ and -7 are the terms of the given algebraic expression.

(iv) $2x^2$, y^2 , -3xy and 4 are the terms of the given algebraic expression.

Identify the terms and also mention the numerical coefficients of those terms:

(i) 4xy, -5x²y, -3yx, 2xy² (ii) 7a²bc,-3ca²b,-(5/2) abc², 3/2abc²,-4/3cba²

Solution:

(i) Like terms - 4xy, -3yx and Numerical coefficients - 4, -3 (i) Like terms - $\{7a^{2}bc, -3ca^{2}b\}$ and Numerical coefficients - 7, -3 $\{-5/2abc^{2}\}$ $\{-5/2\}$ $\{3/2 abc^{2}\}$ $\{3/2\}$ $\{-4/3cba^{2}\}$ $\{-4/3\}$

Question: 4

Identify the like terms in the following algebraic expressions: (i) $a^2 + b^2 - 2a^2 + c^2 + 4a$

(ii) 3x + 4xy - 2yz + 52zy(iii) $abc + ab^{2}c + 2acb^{2} + 3c^{2}ab + b^{2}ac - 2a^{2}bc + 3cab^{2}$

Solution:

The like terms in the given algebraic expressions are as follows.

(i) The like terms in the given algebraic expressions are a^2 and $-2a^2$.

(ii) The like terms in the given algebraic expressions are -2yz and 5/2zy.

(iii) The like terms in the given algebraic expressions are ab^2c , $2acb^2$, b^2ac and $3cab^2$.

Question: 5

Write the coefficient of x in the following:

(i) –12x

(ii) -7xy

(iii) xyz

(iv) -7ax

Solution:

The coefficients of x are as follows.

(i) The numerical coefficient of x is -12.

(ii) The numerical coefficient of x is -7y.

(iii) The numerical coefficient of x is yz.

(iv) The numerical coefficient of x is -7a.

Question: 6

```
Write the coefficient of 2 in the following:

(i) -3x^{2}

(ii) 5x^{2}yz

(iii) 5/7x^{2}z
```

$$(iv) - (3/2) ax^{2} + yx$$

Solution:

The coefficient of x^2 are as follows.

(i) The numerical coefficient of x^2 is -3.

(ii) The numerical coefficient of x^2 is 5yz.

(iii) The numerical coefficient of x^2 is 57z.

(iv) The numerical coefficient of x^2 is – (3/2) a.

Question: 7

Write the coefficient of:

(i) y in -3y

(ii) a in 2ab

(iii) z in –7xyz

(iv) p in -3pqr(v) y² in $9xy^2z$ (vi) x³ in x³ +1 (vii) x² in $-x^2$

Solution:

The coefficients are as follows.

(i) The coefficient of y is -3.

(ii) The coefficient of a is 2b.

(iii) The coefficient of z is -7xy.

(iv) The coefficient of p is -3qr.

(v) The coefficient of y^2 is 9xz.

(vi) The coefficient of x^3 is 1.

(vii) The coefficient of $-x^2$ is -1.

Question: 8

Write the numerical coefficient of each in the following

(i) xy

- (ii) -6yz
- (iii) 7abc

(iv) -2x3y2z

Solution:

The numerical coefficient of each of the given terms is as follows.

(i) The numerical coefficient in the term xy is 1.

(ii) The numerical coefficient in the term - 6yz is - 6.

- (iii) The numerical coefficient in the term 7abc is 7.
- (iv) The numerical coefficient in the term $-2x^{3}y^{2}z$ is -2.

Question: 9

Write the numerical coefficient of each term in the following algebraic expressions:

(i)
$$4x^{2}y - (3/2)xy + 5/2 xy^{2}$$

(ii) $-(5/3)x^{2}y + (7/4)xyz + 3$

Solution:

The numerical coefficient of each term in the given algebraic expression is as follows.

	Term	Coefficient
(i)	4x2y	4
	$-rac{3}{2}xy$	$-\frac{3}{2}$
	$\frac{5}{2}xy2$	$\frac{5}{2}$
(ii)	$-rac{5}{3}x2y$	$-\frac{5}{3}$
	$rac{7}{4}xyz$	$\frac{7}{4}$
	3	3

Write the constant term of each of the following algebraic expressions:

(i)
$$x^{2}y - xy^{2} + 7xy - 3$$

(ii) $a^{3} - 3a^{2} + 7a + 5$

Solution:

The constant term of each of the given algebraic expressions is as follows.

- (i) The constant term in the given algebraic expressions is -3.
- (ii) The constant term in the given algebraic expressions is 5.

Question: 11

Evaluate each of the following expressions for x = -2, y = -1, z = 3:

(i)
$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x}$$

(ii)
$$x^2 + y^2 + z^2 - xy - yz - zx$$

Solution:

(i)
$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} = \frac{-2}{-1} + \frac{-1}{3} + \frac{3}{-2} = \frac{12 - 2 - 9}{6} = \frac{1}{6}$$

(ii) $(-2)^2 + y^2 + z^2 - xy - yz - zx$
 $= (-2)^2 + (-1)^2 + (3)^2 - (-2)(-1) - (-1)(3) - (3)(-2)$
 $= 4 + 1 + 9 - 2 + 3 + 6$
 $= (4 + 1 + 9 + 3 + 6) - 2$
 $= 23 - 2$
 $= 21$

Question: 12

Evaluate each of the following algebraic expressions for x = 1, y = -1, z = 2, a = -2, b = 1, c = -2: (i) ax + by + cz(ii) $ax^2 + by^2 - cz$

(iii) axy + byz + cxy

Solution:

We have x = 1, y = -1, z = 2, a = -2, b = 1 and c = -2.

Thus,

```
(i) ax + by + cz

= (-2)(1) + (1)(-1) + (-2)(2)

= -2 - 1 - 4

= -7

(ii) ax^{2} + by^{2} - cz

= (-2) × 1<sup>2</sup> + 1 × (-1)<sup>2</sup> - (-2) × 2

= 4 + 1 - (-4)

= 5 + 4

= 9

(iii) axy + byz + cxy

= (-2) × 1 × -1 + 1 × -1 × 2 + (-2) × 1 × (-1)

= 2 + (-2) + 2
```

= 2

= 4 - 2

Question: 1

Simplify, the algebraic expressions by removing grouping symbols.

2x + (5x - 3y)

Solution:

We have

2x + (5x - 3y)

Since the '+' sign precedes the parentheses, we have to retain the sign of each term in the parentheses when we remove them.

= 2x + 5x - 3y

= 7x – 3y

Question: 2

Simplify, the algebraic expressions by removing grouping symbols.

3x - (y - 2x)

Solution:

We have

3x - (y - 2x)

Since the '-' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

3x - y + 2x

= 5x – y

Question: 3

Simplify, the algebraic expressions by removing grouping symbols.

5a - (3b - 2a + 4c)

Solution:

We have

5a - (3b - 2a + 4c)

Since the '-' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them.

= 5a - 3b + 2a - 4c

= 7a - 3b - 4c

Question: 4

Simplify, the algebraic expressions by removing grouping symbols.

$$-2(x^{2} - y^{2} + xy) - 3(x^{2} + y^{2} - xy)$$

Solution:

We have $-2(x^{2} - y^{2} + xy) - 3(x^{2} + y^{2} - xy)$

Since the '-' sign precedes the parentheses, we have to change the sign of each term in the parentheses when we remove them. Therefore, we have

$$= -2x^{2} + 2y^{2} - 2xy - 3x^{2} - 3y^{2} + 3xy$$
$$= -2x^{2} - 3x^{2} + 2y^{2} - 3y^{2} - 2xy + 3xy$$
$$= -5x^{2} - y^{2} + xy$$

Question: 5

Simplify, the algebraic expressions by removing grouping symbols.

 $3x + 2y - \{x - (2y - 3)\}$

Solution:

We have

 $3x + 2y - \{x - (2y - 3)\}$

First, we have to remove the small brackets (or parentheses): (). Then, we have to remove the curly brackets (or braces): { }.

Therefore,

 $= 3x + 2y - \{x - 2y + 3\}$ = 3x + 2y - x + 2y - 3= 2x + 4y - 3

Question: 6

Simplify, the algebraic expressions by removing grouping symbols.

 $5a - {3a - (2 - a) + 4}$

Solution:

We have

 $5a - {3a - (2 - a) + 4}$

First, we have to remove the small brackets (or parentheses): (). Then, we have to remove the curly brackets (or braces): { }.

Therefore,

- = 5a {3a 2 + a + 4} = 5a - 3a + 2 - a - 4 = 5a - 4a - 2
- = a 2

Question: 7

Simplify, the algebraic expressions by removing grouping symbols.

 $a - [b - {a - (b - 1) + 3a}]$

Solution:

First we have to remove the parentheses, or small brackets, (), then the curly brackets, { }, and then the square brackets [].

Therefore, we have

 $a - [b - {a - (b - 1) + 3a}]$ = a - [b - {a - b + 1 + 3a}] = a - [b - {4a - b + 1}] = a - [b - 4a + b - 1] = a - [2b - 4a - 1] = a - 2b + 4a + 1

```
= 5a – 2b + 1
```

Simplify, the algebraic expressions by removing grouping symbols.

a - [2b - {3a - (2b - 3c)}]

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

a - [2b - {3a - (2b - 3c)}]

- = a [2b {3a 2b + 3c}]
- = a [2b 3a + 2b 3c]
- = a [4b 3a 3c]
- = a 4b + 3a + 3c
- = 4a 4b + 3c

Question: 9

Simplify, the algebraic expressions by removing grouping symbols.

 $-x + [5y - {2x - (3y - 5x)}]$

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets { }, and then the square brackets, [].

Therefore, we have

 $-x + [5y - {2x - (3y - 5x)}]$ = -x + [5y - {2x - 3y + 5x)] = -x + [5y - {7x - 3y}] = -x + [5y - 7x + 3y] = -x + [8y - 7x] = -x + 8y - 7x = -8x + 8y

Question: 10

Simplify, the algebraic expressions by removing grouping symbols.

2a - [4b - {4a - 3(2a - b)}]

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

 $2a - [4b - {4a - 3(2a - b)}]$ = 2a - [4b - {4a - 6a + 3b}] = 2a - [4b - {- 2a + 3b}] = 2a - [4b + 2a - 3b] = 2a - [b + 2a] = 2a - b - 2a = -b

Question: 11

Simplify, the algebraic expressions by removing grouping symbols.

-a - [a + {a + b - 2a - (a - 2b)} - b]

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have $- a - [a + {a + b - 2a - (a - 2b)} - b]$ $= - a - [a + {a + b - 2a - a + 2b} - b]$ $= - a - [a + {- 2a + 3b} - b]$ = - a - [a - 2a + 3b - b] = - a - [- a + 2b] = - 2b

Question: 12

Simplify, the algebraic expressions by removing grouping symbols.

 $2x - 3y - [3x - 2y - \{x - z - (x - 2y)\}]$

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

```
2x - 3y - [3x - 2y - \{x - z - (x - 2y)\})
= 2x - 3y - [3x - 2y - {x - z - x + 2y}]
= 2x - 3y - [3x - 2y - {- z + 2y}]
= 2x - 3y - [3x - 2y + z - 2y]
= 2x - 3y - [3x - 4y + z]
= 2x - 3y - 3x + 4y - z
= -x + y - z
```

Question: 13

Simplify, the algebraic expressions by removing grouping symbols.

 $5 + [x - \{2y - (6x + y - 4) + 2x\} - \{x - (y - 2)\}]$

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

$$5 + [x - {2y - (6x + y - 4) + 2x} - {x - (y - 2)}]$$

= 5 + [x - {2y - 6x - y + 4 + 2x} - {x - y + 2}]
= 5 + [x - {y - 4x + 4} - {x - y + 2}]
= 5 + [x - y + 4x - 4 - x + y - 2]
= 5 + [4x - 6]
= 5 + 4x - 6
= 4x - 1

Question: 14

Simplify, the algebraic expressions by removing grouping symbols.

$$x^{2} - [3x + [2x - (x^{2} - 1)] + 2]$$

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

$$x^{2} - [3x + [2x - (x^{2} - 1)] + 2]$$

= $x^{2} - [3x + [2x - x^{2} + 1] + 2]$
= $x^{2} - [3x + 2x - x^{2} + 1] + 2]$
= $x^{2} - [5x - x^{2} + 3]$
= $x^{2} - [5x - x^{2} + 3]$
= $x^{2} - 5x + x^{2} - 3$
= $2x^{2} - 5x - 3$

Question: 15

Simplify, the algebraic expressions by removing grouping symbols.

 $20 - [5xy + 3]x^{2} - (xy - y) - (x - y)]]$ Solution: $20 - [5xy + 3]x^{2} - (xy - y) - (x - y)]]$ $= 20 - [5xy + 3]x^{2} - xy + y - x + y]]$ $= 20 - [5xy + 3]x^{2} - xy + 2y - x]]$ $= 20 - [5xy + 3x^{2} - 3xy + 6y - 3x]$ $= 20 - [2xy + 3x^{2} + 6y - 3x]$ $= 20 - 2xy - 3x^{2} - 6y + 3x$ $= - 3x^{2} - 2xy - 6y + 3x + 20$

Question: 16

Simplify, the algebraic expressions by removing grouping symbols.

 $85 - [12x - 7(8x - 3) - 2\{10x - 5(2 - 4x)\}]$

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

 $85 - [12x - 7(8x - 3) - 2\{10x - 5(2 - 4x)\}]$ = $85 - [12x - 56x + 21 - 2\{10x - 10 + 20x\}]$ = $85 - [12x - 56x + 21 - 2\{30x - 10\}]$ = 85 - [12x - 56x + 21 - 60x + 20]= 85 - [12x - 116x + 41]= 85 - [-104x + 41]= 85 + 104x - 41= 44 + 104x

Question: 17

Simplify, the algebraic expressions by removing grouping symbols.

 $xy[yz - zx - \{yx - (3y - xz) - (xy - zy)\}]$

Solution:

First we have to remove the small brackets, or parentheses, (), then the curly brackets, { }, and then the square brackets, [].

Therefore, we have

 $xy - [yz - zx - {yx - (3y - xz) - (xy - zy)}]$ = $xy - [yz - zx - {yx - 3y + xz - xy + zy}]$ = $xy - [yz - zx - {-3y + xz + zy}]$

- = xy [yz zx + 3y xz zy]
- = xy [-zx + 3y xz]
- = xy [- 2zx + 3y]
- = xy + 2xz 3y

Question: 1

Place the last two terms of the following expressions in parentheses preceded by a minus sign:

(i) x + y - 3z + y(ii) 3x - 2y - 5z - 4(iii) 3a - 2b + 4c - 5(iv) 7a + 3b + 2c + 4(v) $2a^{2} - b^{2} - 3ab + 6$ (vi) $a^{2} + b^{2} - c^{2} + ab - 3ac$

Solution:

We have

(i) x + y - 3z + y = x + y - (3z - y)(ii) 3x - 2y - 5z - 4 = 3x - 2y - (5z + 4)(iii) 3a - 2b + 4c - 5 = 3a - 2b - (-4c + 5)(iv) 7a + 3b + 2c + 4 = 7a + 3b - (-2c - 4)(v) $2a^{2} - b^{2} - 3ab + 6 = 2a^{2} - b^{2} - (3ab - 6)$ (vi) $a^{2} + b^{2} - c^{2} + ab - 3ac = a^{2} + b^{2} - c^{2} - (-ab + 3ac)$

Question: 2

Write each of the following statements by using appropriate grouping symbols:

- (i) The sum of a b and 3a 2b + 5 is subtracted from 4a + 2b 7.
- (ii) Three times the sum of 2x + y [5 (x 3y)] and 7x 4y + 3 is subtracted from 3x 4y + 7

(iii) The subtraction of $x^2 - y^2 + 4xy$ from $2x^2 + y^2 - 3xy$ is added to $9x^2 - 3y^2 - xy$.

Solution:

(i) The sum of a - b and 3a - 2b + 5 = [(a - b) + (3a - 2b + 5)].

This is subtracted from 4a + 2b - 7.

Thus, the required expression is (4a + 2b - 7) - [(a - b) + (3a - 2b + 5)]

(ii) Three times the sum of $2x + y - \{5 - (x - 3y)\}$ and $7x - 4y + 3 = 3[(2x + y - \{5 - (x - 3y)\}) + (7x - 4y + 3)]$

This is subtracted from 3x - 4y + 7.

Thus, the required expression is $(3x - 4y + 7) - 3[(2x + y - {5 - (x - 3y)}) + (7x - 4y + 3)]$ (iii) The product of subtraction of $x^2 - y^2 + 4xy$ from $2x^2 + y^2 - 3xy$ is given by $\{(2x^2 + y^2 - 3xy) - (x^2 - y^2 + 4xy)\}$

When the above equation is added to $9x^2 - 3y^2 - xy$, we get $\{(2x^2 + y^2 - 3xy) - (x^2 - y^2 + 4xy)\} + (9x^2 - 3y^2 - xy)\}$

Question: 1

Add the following:

(i) 3x and 7x

(ii) -5xy and 9xy

Solution:

We have (i) 3x + 7x = (3 + 7) x = 10x (ii) -5xy + 9xy = (-5 + 9)xy = 4xy

Question: 2

Simplify each of the following: (i) $7x^{3}y + 9yx^{3}$ (ii) $12a^{2}b + 3ba^{2}$

Solution:

Simplifying the given expressions, we have (i) $7x^{3}y + 9yx^{3} = (7 + 9)x^{3}y = 16x^{3}y$ (ii) $12a^{2}b + 3ba^{2} = (12 + 3)a^{2}b = 15a^{2}b$

Question: 3

Add the following:

(i) 7abc, -5abc, 9abc, -8abc (ii) $2x^{2}y$, $-4x^{2}y$, $6x^{2}y$, $-5x^{2}y$

Solution:

Adding the given terms, we have

```
(i) 7abc + (-5abc) + (9abc) + (-8abc)
```

= 7abc - 5abc + 9abc - 8abc

= (7 - 5 + 9 - 8)abc

= (16 – 13)abc

= 3abc (ii) $2x^{2}y + (-4x^{2}y) + (6x^{2}y) + (-5x^{2}y)$ = $2x^{2}y - 4x^{2}y + 6x^{2}y - 5x2y$ = $(2 - 4 + 6 - 5) \times 2y$ = $(8 - 9) \times 2y$ = $-x^{2}y$

Question: 4

Add the following expressions: (i) $x^{3}-2x^{2}y+3xy^{2}-y^{3}$, $2x^{3}-5xy^{2}+3x^{2}y-4y^{3}$

(ii)
$$a^4 - 2a^3b + 3ab^3 + 4a^2b^2 + 3b^4$$
, $-2a^4 - 5ab^3 + 7a^3b - 6a^2b^2 + b^4$

Solution:

Adding the given expressions, we have

(i) x^{3} -2 $x^{2}y$ + 3 xy^{2} - y^{3} , 2 x^{3} - 5 xy^{2} + 3 $x^{2}y$ - 4 y^{3}

Collecting positive and negative like terms together, we get

 $x^{3} + 2x^{3} - 2x^{2}y + 3x^{2}y + 3xy^{2} - 5xy^{2} - y^{3} - 4y^{3}$ = $3x^{3} + x^{2}y - 2xy^{2} - 5y^{3}$ (ii) $a^{4} - 2a^{3}b + 3ab^{3} + 4a^{2}b^{2} + 3b^{4}, -2a^{4} - 5ab^{3} + 7a^{3}b - 6a^{2}b^{2} + b^{4}$ $a^{4} - 2a^{3}b + 3ab^{3} + 4a^{2}b^{2} + 3b^{4} - 2a^{4} - 5ab^{3} + 7a^{3}b - 6a^{2}b^{2} + b^{4}$

Collecting positive and negative like terms together, we get

 $a^{4} - 2a^{4} - 2a^{3}b + 7a^{3}b + 3ab^{3} - 5ab^{3} + 4a^{2}b^{2} - 6a^{2}b^{2} + 3b^{4} + b^{4}$ = - $a^{4} + 5a^{3}b - 2ab^{3} - 2a^{2}b^{2} + 4b^{4}$

Question: 5

Add the following expressions:

(i) 8a - 6ab + 5b, -6a - ab - 8b and -4a + 2ab + 3b(ii) $5x^3 + 7 + 6x - 5x^2$, $2x^2 - 8 - 9x$, $4x - 2x^2 + 3x + 3x^2 - 3x - 9x - x^2$ and $x - x^2 - x^3 - 4$

Solution:

(i) Required expression = (8a - 6ab + 5b) + (-6a - ab - 8b) + (-4a + 2ab + 3b)

Collecting positive and negative like terms together, we get

8a - 6a - 4a - 6ab - ab + 2ab + 5b - 8b + 3b

= 8a - 10a - 7ab + 2ab + 8b - 8b

= -2a - 5ab

(ii) Required expression = $(5 \times 3 + 7 + 6x - 5x^2) + (2 \times 2 - 8 - 9x) + (4x - 2x^2 + 3 \times 3) + (3 \times 3 - 9x - x^2) + (x - x^2 - x^3 - 4)$

Collecting positive and negative like terms together, we get

 $5x^{3} + 3x^{3} + 3x^{3} - x^{3} - 5x^{2} + 2x^{2} - 2x^{2} - x^{2} + 6x - 9x + 4x - 9x + x + 7 - 8 - 4$ = 10x³ - 7x² - 7x - 5

Question: 6

Add the following:

(i) x - 3y - 2z 5x + 7y - 8z 3x - 2y + 5z(ii) 4ab - 5bc + 7ca -3ab + 2bc - 3ca5ab - 3bc + 4ca

Solution:

(i) Required expression = (x - 3y - 2z) + (5x + 7y - 8z) + (3x - 2y + 5z)

Collecting positive and negative like terms together, we get

x + 5x + 3x - 3y + 7y - 2y - 2z - 8z + 5z

= 9x - 5y + 7y - 10z + 5z

= 9x + 2y - 5z

(ii) Required expression = (4ab - 5bc + 7ca) + (-3ab + 2bc - 3ca) + (5ab - 3bc + 4ca)

Collecting positive and negative like terms together, we get

4ab - 3ab + 5ab - 5bc + 2bc - 3bc + 7ca - 3ca + 4ca

= 9ab - 3ab - 8bc + 2bc + 11ca - 3ca

= 6ab - 6bc + 8ca

Question: 7

Add $2x^2$ - 3x + 1 to the sum of $3x^2$ - 2x and 3x + 7.

Solution:

Sum of $3x^2 - 2x$ and 3x + 7= $(3x^2 - 2x) + (3x + 7)$ = $3x^2 - 2x + 3x + 7$ = $(3x^2 + x + 7)$ Now, required expression = $2x^2 - 3x + 1 + (3x^2 + x + 7)$ = $2x^2 + 3x^2 - 3x + x + 1 + 7$ = $5x^2 - 2x + 8$

Question: 8

Add $x^{2} + 2xy + y^{2}$ to the sum of $x^{2} - 3y^{2}$ and $2x^{2} - y^{2} + 9$.

Solution:

Sum of
$$x^2 - 3y^2$$
 and $2x^2 - y^2 + 9$

$$= (x^2 - 3y^2) + (2x^2 - y^2 + 9)$$

$$= x^2 + 2x^2 - 3y^2 - y^2 + 9$$

$$= 3x^2 - 4y^2 + 9$$
Now, required expression = $(x^2 + 2xy + y^2) + 3x^2 - 4y^2 + 9$

$$= x^2 + 3x^2 + 2xy + y^2 - 4y^2 + 9$$

$$= 4x^2 + 2xy - 3y^2 + 9$$

Question: 9

Add $a^{3} + b^{3} - 3$ to the sum of $2a^{3} - 3b^{3} - 3ab + 7$ and $-a^{3} + b^{3} + 3ab - 9$.

Solution:

First, we need to find the sum of $2a^3 - 3b^3 - 3ab + 7$ and $-a^3 + b^3 + 3ab - 9$ = $(2a^3 - 3b^3 - 3ab + 7) + (-a^3 + b^3 + 3ab - 9)$ Collecting positive and negative like terms together, we get = $2a^3 - a^3 - 3b^3 + b^3 - 3ab + 3ab + 7 - 9$ = $a^3 - 2b^3 - 2$ Now, the required expression = $(a^3 + b^3 - 3) + (a^3 - 2b^3 - 2)$ = $a^3 + a^3 + b^3 - 2b^3 - 3 - 2$ = $2a^3 - b^3 - 5$

Question: 10

Subtract: (i) 7a²b from 3a²b (ii) 4xy from -3xy

Solution:

(i) Required expression = $3a^2b - 7a^2b$ = $(3 - 7)a^2b$ = $-4a^2b$

```
(ii) Required expression = -3xy - 4xy
```

= -7xy

Question: 11

Subtract:

(i) - 4x from 3y

(ii) - 2x from - 5y

Solution:

(i) Required expression = (3y) - (-4x)

= 3y + 4x

(ii) Required expression = (-5y) - (-2x)

= -5y + 2x

Question: 12

Subtract: (i) $6x^{3}-7x^{2}+5x-3$ from $4-5x+6x^{2}-8x^{3}$ (ii) $-x^{2}-3z$ from $5x^{2}-y+z+7$ (iii) $x^{3}+2x^{2}y+6xy^{2}-y^{3}$ from $y^{3}-3xy^{2}-4x^{2}y$

Solution:

(i) Required expression = $(4 - 5x + 6x^2 - 8x^3) - (6x^3 - 7x^2 + 5x - 3)$ = $4 - 5x + 6x^2 - 8x^3 - 6x^3 + 7x^2 - 5x + 3$ = $-8x^3 - 6x^3 + 7x^2 + 6x^2 - 5x - 5x + 3 + 4$ = $-14x^3 + 13x^2 - 10x + 7$ (ii) Required expression = $(5x^2 - y + z + 7) - (-x^2 - 3z)$ = $5x^2 - y + z + 7 + x^2 + 3z$ = $5x^2 + x^2 - y + z + 3z + 7$ = $6x^2 - y + 4z + 7$ (iii) Required expression = $(y^3 - 3xy^2 - 4x^2y) - (x^3 + 2x^2y + 6xy^2 - y^3)$ = $y^3 - 3xy^2 - 4x^2y - x^3 - 2x^2y - 6xy^2 + y^3$ $y^3 + y^3 - 3xy^2 - 6xy^2 - 4x^2y - 2x^2y - x^3$ = $2y^3 - 9xy^2 - 6x^2y - x^3$

Question: 13

From (i) $p3 - 4 + 3p^{2}$, take away $5p^{2} - 3p^{3} + p - 6$ (ii) $7 + x - x^{2}$, take away $9 + x + 3x^{2} + 7x^{3}$ (iii) $1 - 5y^{2}$, take away $y^{3} + 7y^{2} + y + 1$ (iv) $x^{3} - 5x^{2} + 3x + 1$, take away $6x^{2} - 4x^{3} + 5 + 3x$

Solution:

(i) Required expression = $(p^3-4+3p^2)-(5p^2-3p^3+p-6)$ $= p^3 - 4 + 3p^2 - 5p^2 + 3p^3 - p + 6$ $= p^3 + 3p^3 + 3p^2 - 5p^2 - p - 4 + 6$ $=4p^{3}-2p^{2}-p+2$ (ii) Required expression = $(7 + x - x^2) - (9 + x + 3x^2 + 7x^3)$ $= 7 + x - x^2 - 9 - x - 3x^2 - 7x^3$ $=-7x^3-x^2-3x^2+7-9$ $= -7x^3 - 4x^2 - 2$ (iii) Required expression = $(1 - 5y^2) - (y^3 + 7y^2 + y + 1)$ $= 1 - 5y^2 - y^3 - 7y^2 - y - 1$ $= -y^3 - 5y^2 - 7y^2 - y$ $= -y^3 - 12y^2 - y$ (iv) Required expression = $(x^3 - 5x^2 + 3x + 1) - (6x^2 - 4x^3 + 5 + 3x)$ $=x^{3}-5x^{2}+3x+1-6x^{2}+4x^{3}-5-3x$ $=x^{3}+4x^{3}-5x^{2}-6x^{2}+1-5$ $=5x^3-11x^2-4$

Question: 14

From the sum of $3x^2 - 5x + 2$ and $-5x^2 - 8x + 9$ subtract $4x^2 - 7x + 9$.

Solution:

Required expression =
$$[(3x^2 - 5x + 2) + (-5x^2 - 8x + 9)] - (4x^2 - 7x + 9)$$

= $[3x^2 - 5x + 2 - 5x^2 - 8x + 9] - (4x^2 - 7x + 9)$
= $[3x^2 - 5x^2 - 5x - 8x + 2 + 9] - (4x^2 - 7x + 9)$
= $[-2x^2 - 13x + 11] - (4x^2 - 7x + 9)$
= $-2x^2 - 13x + 11 - 4x^2 + 7x - 9$
= $-2x^2 - 4x^2 - 13x + 7x + 11 - 9$
= $-6x^2 - 6x + 2$

Question: 15

Subtract the sum of 13x - 4y + 7z and -6z + 6x + 3y from the sum of 6x - 4y - 4z and 2x + 4y - 7.

Solution:

Sum of (13x - 4y + 7z) and (-6z + 6x + 3y)= (13x - 4y + 7z) + (-6z + 6x + 3y)= (13x - 4y + 7z - 6z + 6x + 3y)= (13x + 6x - 4y + 3y + 7z - 6z)= (19x - y + z)Sum of (6x - 4y - 4z) and (2x + 4y - 7)= (6x - 4y - 4z) + (2x + 4y - 7)= (6x - 4y - 4z + 2x + 4y - 7)= (6x + 2x - 4z - 7)= (6x - 4z - 7)Now, required expression = (8x - 4z - 7) - (19x - y + z)= 8x - 4z - 7 - 19x + y - z= 8x - 19x + y - 4z - z - 7= -11x + y - 5z - 7

From the sum of $x^2 + 3y^2 - 6xy$, $2x^2 - y^2 + 8xy$, $y^2 + 8$ and $x^2 - 3xy$ subtract $-3x^2 + 4y^2 - xy + x - y + 3$.

Solution:

Sum of $(x^2 + 3y^2 - 6xy)$, $(2x^2 - y^2 + 8xy)$, $(y^2 + 8)$ and $(x^2 - 3xy)$ = $(x^2 + 3y^2 - 6xy) + (2x^2 - y^2 + 8xy) + (y^2 + 8) + (x^2 - 3xy)$ = $(x^2 + 3y^2 - 6xy + 2x^2 - y^2 + 8xy + y^2 + 8 + x^2 - 3xy)$ = $(x^2 + 2x^2 + x^2 + 3y^2 - y^2 + y^2 - 6xy + 8xy - 3xy + 8)$ = $(4x^2 + 3y^2 - xy + 8)$ Now, required expression = $(4x^2 + 3y^2 - xy + 8) - (-3x^2 + 4y^2 - xy + x - y + 3)$ = $4x^2 + 3y^2 - xy + 8 + 3x^2 - 4y^2 + xy - x + y - 3$ = $4x^2 + 3x^2 + 3y^2 - 4y^2 - xy + xy - x + y - 3 + 8$ = $7x^2 - y^2 - x + y + 5$

Question: 17

What should be added to xy - 3yz + 4zx to get 4xy - 3zx + 4yz + 7?

Solution:

The required expression can be got by subtracting xy - 3yz + 4zx from 4xy - 3zx + 4yz + 7.

Therefore, required expression = (4xy - 3zx + 4yz + 7) - (xy - 3yz + 4zx)

- = 4xy 3zx + 4yz + 7 xy + 3yz 4zx
- = 4xy xy 3zx 4zx + 4yz + 3yz + 7
- = 3xy 7zx + 7yz + 7

Question: 18

What should be subtracted from $x^2 - xy + y^2 - x + y + 3$ to obtain $-x^2 + 3y^2 - 4xy + 1$?

Solution:

Let 'M' be the required expression. Then, we have

$$x^2 - xy + y^2 - x + y + 3 - M = -x^2 + 3y^2 - 4xy + 1$$

Therefore,

$$egin{aligned} M &= (x^2 - xy + y^2 - x + y + 3) - (-x^2 + 3y^2 - 4xy + 1) \ &= x^2 - xy + y^2 - x + y + 3 + x^2 - 3y^2 + 4xy - 1 \end{aligned}$$

Collecting positive and negative like terms together, we get

$$egin{aligned} &x^2+x^2-xy+4xy+y^2-3y^2-x+y+3-1\ &=2x^2+3xy-2y^2-x+y+2 \end{aligned}$$

Question: 19

How much is x - 2y + 3z greater than 3x + 5y - 7?

Solution:

Required expression = (x - 2y + 3z) - (3x + 5y - 7)

Collecting positive and negative like terms together, we get

x - 3x - 2y + 5y + 3z + 7= -2x - 7y + 3z + 7

How much is $x^2 - 2xy + 3y^2$ less than $2x^2 - 3y^2 + xy$?

Solution:

Required expression =
$$(2x^2 - 3y^2 + xy) - (x^2 - 2xy + 3y^2)$$

= $2x^2 - 3y^2 + xy - x^2 + 2xy - 3y^2$

Collecting positive and negative like terms together, we get

$$egin{aligned} & 2x^2-x^2-3y^2-3y^2+xy+2xy\ & x^2-6y^2+3xy \end{aligned}$$

Question: 21

How much does $a^2 - 3ab + 2b^2$ exceed $2a^2 - 7ab + 9b^2$?

Solution:

Required expression = $(a^2 - 3ab + 2b^2) - (2a^2 - 7ab + 9b^2)$ = $a^2 - 3ab + 2b^2 - 2a^2 + 7ab - 9b^2$ Collecting positive and negative like terms together, we get = $a^2 - 2a^2 - 3ab + 7ab + 2b^2 - 9b^2$ = $-a^2 + 4ab - 7b^2$

Question: 22

What must be added to $12x^3 - 4x^2 + 3x - 7$ to make the sum $x^3 + 2x^2 - 3x + 2?$

Solution:

Let 'M' be the required expression. Thus, we have

$$12x^3 - 4x^2 + 3x - 7 + M = x^3 + 2x^2 - 3x + 2$$

Therefore,

$$egin{aligned} M &= (x^3+2x^2-3x+2) ext{-}(12x^3-4x^2+3x-7) \ M &= x^3+2x^2-3x+2-12x^3+4x^2-3x+7 \end{aligned}$$

Collecting positive and negative like terms together, we get

$$egin{aligned} M &= x^3 - 12x^3 + 2x^2 + 4x^2 - 3x - 3x + 7 + 2\ x^3 - 12x^3 + 2x^2 + 4x^2 - 3x - 3x + 7 + 2\ &= -11x^3 + 6x^2 - 6x + 9 \end{aligned}$$

Question: 23
If P =
$$7x^2 + 5xy - 9y^2$$
, Q = $4y^2 - 3x^2 - 6xy$ and R = $-4x^2 + xy + 5y^2$, show that P + Q + R = 0

Solution:

We have
P + Q + R =
$$(7x^2 + 5xy - 9y^2)$$
 + $(4y^2 - 3x^2 - 6xy)$ + $(-4x^2 + xy + 5y^2)$
= $7x^2 + 5xy - 9y^2 + 4y^2 - 3x^2 - 6xy - 4x^2 + xy + 5y^2$

Collecting positive and negative like terms together, we get

$$7x^2 - 3x^2 - 4x^2 + 5xy - 6xy + xy - 9y^2 + 4y^2 + 5y^2$$

= $7x^2 - 7x^2 + 6xy - 6xy - 9y^2 + 9y^2$

If $P = a^2 - b^2 + 2ab$, $Q = a^2 + 4b^2 - 6ab$, $R = b^2 + b$, $S = a^2 - 4ab$ and $T = -2a^2 + b^2 - ab + a$. Find P + Q + R + S - T.

Solution:

We have

$$\begin{array}{l} P+Q+R+S-T=[(a^2-b^2+2ab)+(a^2+4b^2-6ab)+(b^2+b)\\ +(a^2-4ab)]-(-2a^2+b^2-ab+a)\\ =[a^2-b^2+2ab+a^2+4b^2-6ab+b^2+b+a^2-4ab]\\ -(-2a^2+b^2-ab+a)\\ =[3a^2+4b^2-8ab+b]-(-2a^2+b^2-ab+a)\\ =3a^2+4b^2-8ab+b+2a^2-b^2+ab-a \end{array}$$

Collecting positive and negative like terms together, we get